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We show that the order-disorder phase transition in the three-state Potts ferromagnet on a square lattice is
driven by a coupled proliferation of domain walls and vortices. Raising the vortex core energy above a
threshold value decouples the proliferation and splits the transition into two. The phase between the two
transitions exhibits an emergent U(1) symmetry and quasi-long-range order. Lowering the core energy
below a threshold value also splits the order-disorder transition but the system forms a vortex lattice in the
intermediate phase.
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Phase transitions in a variety of systems are driven by the
proliferation of topological defects [1–4]. Manipulation of
defects, therefore, provides a natural route towards altering
the nature and location of phase transitions, which in turn
can significantly alter the phase diagram itself. The role
played by a single type of defect, and the effect of
manipulating it, has been studied in models of superfluids
[5–7], liquid crystals [8,9], and Heisenberg ferromagnets
[10–12]. In a large class of systems, however, the phase
diagram is determined by the proliferation of not one but
multiple types of defects [13–20]. We would like to identify
a minimal model in which the interplay between two types
of defects, and the effect of manipulating them, can be
studied clearly.
The two-state (Ising) ferromagnet on a square lattice is

one of the simplest spin models that exhibit a defect driven
phase transition. Domain wall defects appear as small loops
in the ordered phase of the model and drive a transition to
the disordered phase upon proliferation [21,22]. The next
simplest model, the three-state Potts ferromagnet, also
exhibits an order-disorder transition [23,24]. This model,
however, supports the formation of domain wall as well as
Z3 vortex defects. An approximate energy versus entropy
balance calculation suggests that the system disorders
because vortex-antivortex pairs unbind as soon as the
domain walls proliferate [14]. Apart from this calculation,
the role played by the two types of defects in the model has
remained largely unexplored.
In this Letter, we use Monte Carlo simulations to

demonstrate that the interplay between domain walls and
vortices in the three-state Potts model generates a rich
phase diagram (Fig. 1). We show that the order-disorder
transition in the model is driven by a coupled proliferation
of the two types of defects. When we raise the core energy
of the vortices by an amount λ, the model continues to
exhibit the order-disorder transition up to a certain thresh-
old λ ¼ λþ. Above λþ, the vortices proliferate after the
domain walls and the transition splits into two. The phase,
which appears intermediate between the two transitions,

exhibits an emergent Uð1Þ symmetry and quasi-long-range
order (QLRO). When we lower the core energy using
negative values of λ, the order-disorder transition of the
pure Potts case becomes sharper. Below a threshold λ−,
the transition again splits into two. In this case, however,
the intermediate phase is a vortex lattice in which the
vortices and antivortices display sublattice ordering.
Before discussing the phase diagram in detail, we

describe how the defects are identified for a given con-
figuration of spins. Each spin σi, at vertex i on a square
lattice Λ, can be in one of three states: σi ∈ f0; 1; 2g.
Domain walls and vortices reside on the edges and vertices,
respectively, of the dual lattice Λ0 which is a square lattice
displaced from Λ by half a lattice spacing along each axis.
If two spins across an edge hi; ji ∈ Λ are in dissimilar
states, then a domain wall is placed on the dual edge in Λ0.
The vorticity at each dual vertex i0 ∈ Λ0 is determined by
calculating a discrete winding number ωi0 [19]. For Z3

vortices, ωi0 ¼ ðΔba þ Δcb þ Δdc þ ΔadÞ=3 where Δba
represents ðσb − σaÞ wrapped to lie in ½−1;þ1� and σa,
σb, σc, σd are the four spins on the square plaquette in Λ

FIG. 1. Schematic phase diagram in the parameter space of
temperature T and vortex suppression λ. The pure Potts model
corresponds to λ ¼ 0. Estimates for λþ and λ− are given in the
text. Domain walls (black lines), vortices (blue dots), and
antivortices (red dots) are overlaid on typical spin configurations
obtained in each phase.
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surrounding i0 in an anticlockwise sense. A vortex
(antivortex) is present at i0 if ωi0 is þ1 (−1).
A standard method for suppressing the formation of

vortices in models of superfluids involves raising the vortex
core energy by an amount λ [5,6,25,26]. Upon inclusion of
such a term for Z3 vortices, the three-state Potts
Hamiltonian, with nearest neighbor ferromagnetic interac-
tion J > 0, becomes

H ¼ J
X

hi;ji∈Λ
ð1 − δσi;σjÞ þ λ

X

i0∈Λ0
jωi0 j: ð1Þ

If the number of domain walls and vortex defects corre-
sponding to a given spin configuration is denoted by Ndw
and Nvx, respectively, then (1) can be rewritten as
H ¼ JNdw þ λNvx, clearly indicating that the statistical
behavior of the model depends solely on the number of
defects. In particular, the behavior depends on the number
of domain walls and their three branch intersections. Each
i0 ∈ Λ0 is visited by zero, two, three, or four domain walls.
Out of these four scenarios, ωi0 ≠ 0 only when three
domain walls intersect. The present model can, therefore,
be equivalently expressed as a domain wall loop model [27]
with a fugacity parameter λ controlling the density of three
branch intersections.
We have determined the phase diagram of the model in

the two-dimensional parameter space of λ and temperature
T by simulating (1) on a L × L square lattice. As the
plaquette-based λ term cannot be incorporated into cur-
rently known cluster algorithms, the spins were updated
using a single spin-flip algorithm [28]. We measured the
density of domain walls ρdw ¼ Ndw=2L2, the density of
vortices ρvx ¼ Nvx=L2, and the Potts order parameter

S ¼ 3ðmaxfn0; n1; n2g − 1=3Þ=2, where nσ represents
the fraction of spins in state σ. Large autocorrelation times,
arising from the use of the single spin-flip algorithm, were
estimated for these observables and measurements were
made over 105–106 uncorrelated configurations.
In the pure Potts case (λ ¼ 0), the order parameter

decays and the susceptibility χS ¼ L2ðhS2i − hSi2Þ=T
diverges (Fig. 2) close to the transition temperature
Tc ¼ 1= logð1þ ffiffiffi

3
p Þ ¼ 0.9949 [24]. The transition is

accompanied by a simultaneous proliferation of both types
of defects, as indicated by an increase in their densities. The
transition and defect proliferation shift to a higher temper-
ature T ≈ 1.26 when vortices are weakly suppressed using
λ ¼ 2 (Fig. 2). The location of the transition continues to
shift in this manner, with increasing λ, up to a threshold
value λ ¼ λþ which we estimate to lie around λþ ≈ 8.
Above λþ, the order parameter clearly exhibits a two-

step decay and the susceptibility shows two distinct peaks
(Fig. 2). For λ ¼ 10, the first decay from the ordered phase
to the intermediate phase occurs around T ≈ 1.4 and is
accompanied by the proliferation of domain walls. The
vortices proliferate near the second decay, which marks the
transition from the intermediate phase to the disordered
phase at T ≈ 2.7. Extremely strong suppression of vortices
keeps the first decay unchanged but shifts the second decay
to T → ∞, thus establishing the role of vortices in driving
the disordering transition.
Two-step decay of magnetization, driven by successive

proliferation of domain walls and vortices, has been
discussed in the context of Zn vector Potts (clock) spin
models with n ≥ 5 [13,14,19,29–34]. These models exhibit
a phase, intermediate between order and disorder, where

FIG. 2. The order-disorder transition of the pure Potts model (λ ¼ 0), marked by the decay of S and divergence of χS , is accompanied
by a simultaneous increase of ρdw and ρvx. Weak suppression of vortices (λ ¼ 2) shifts the transition to a higher temperature. Stronger
suppression decouples the simultaneous proliferation of the defects and splits the transition into two. The data have been obtained for
L ¼ 16 (diamonds), L ¼ 32 (triangles), and L ¼ 64 (circles).
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domain walls proliferate but vortices do not. In the
intermediate phase, the system fragments into numerous
domains in a manner such that the spins fluctuate by
arbitrary amounts over large distances and exhibit a Uð1Þ
symmetry upon coarse-graining [14]. The emergent
continuous symmetry destroys long-range order and gives
rise to a quasi-long-range order which is characterized
by a power-law decay of two-point correlation CðrÞ ¼
hcosð2πðσ0 − σrÞ=3Þi ∝ r−η, where σ0 and σr are spins
located at a Eucledian distance r apart on the lattice. The
exponent η changes continuously with temperature
throughout the quasi-long-range ordered phase until vortex
proliferation disorders the system [19].
We have measured the distribution Pðmx;myÞ of

the Z3 order parameter m ¼ mx þ imy, where mx ¼P
σnσ cosð2πσ=3Þ and my ¼

P
σnσ sinð2πσ=3Þ [32,34].

The distribution (Fig. 3) clearly indicates a breaking of
the threefold symmetry in the ordered phase and an
enhancement to Uð1Þ symmetry in the intermediate phase.
The Uð1Þ symmetry survives an increase in system size
while the magnetization ðm2

x þm2
yÞ1=2 tends to zero in

accordance with the Mermin-Wagner theorem [35,36]. CðrÞ
exhibits a power-law decay throughout the intermediate
phase. η increases with temperature from η ≈ 0.35 and
appears to saturate around η ≈ 0.75 at high temperatures
(Fig. 3). This confirms that the intermediate phase is indeed
a quasi-long-range ordered phase.
We now turn to the regime λ < 0. The formation of

vortices is enhanced in this regime and the order-disorder
transition of the pure Potts case shifts to lower temperatures
when λ is made more negative (Fig. 4). Additionally, the
decay of the order parameter grows sharper and the
simultaneous rise in the densities of domain walls and
vortices across the transition becomes more abrupt

compared to the pure Potts case. When λ is decreased
below a threshold value λ− ≈ −1.3, the model exhibits three
distinct regimes (Fig. 4). The densities of domain walls and
vortices are nearly zero in the ordered phase, show a sharp
jump to a large value at intermediate temperatures and
decrease gradually in the disordered phase. The order
parameter, on the other hand, shows a sharp decay from
the ordered phase to the intermediate regime, and remains
zero thereafter. This might suggest disordered behavior in
the intermediate regime but an inspection of spin configu-
rations in that regime (Fig. 1) reveals that the spins are not
disordered. Instead, they exhibit a weave pattern that
corresponds to an ordering of the vortex defects: vortices
reside on one sublattice and antivortices reside on the other.
In order to characterize the sublattice ordering of the

vortices, we define a variable ϵi0 which is either þ1 or −1
depending on the sublattice of the dual vertex i0. Since some
of the dual vertices are vacant (ωi0 ¼ 0), the sublattice vortex
order parameter can be chosen to be of the same form as
that for a site-diluted Ising antiferromagnet [37,38]:
msvx ¼ L−2P

i0∈Λ0ϵi0ωi0 . Themagnitude of this order param-
eter becomes nonzero in the vortex lattice and clearly
demarcates the intermediate phase from the ordered and
disordered phases (Fig. 4). Since this order parameter, based
on topological defects, is able to distinguish thevortex lattice
phase from the disordered phase, while the symmetry-based
order parameter S is unable to do so, the vortex lattice phase
provides a simple example of classical topological order.
Formation of vortex lattices in superfluids and supercon-
ductors has been extensively studied over the past few
decades [7,38–41] In superconducting thin films, prolifer-
ation of dislocations and disclinations drive a two-step
structural melting of the vortex lattice [15,42–44]. In the
present model, the melting of the vortex lattice to the
disordered phase occurs via a single step process as
indicated by the decay of hjmsvxji (Fig. 4). The sublimation
of the vortex lattice to the ordered phase, which occurs at a
lower temperature, is marked by a sharp decay of hjmsvxji.
With a further decrease of λ, the melting shifts to higher
temperatures (Fig. 4). The sublimation, on the other hand,
shifts to lower temperatures and hits the zero temperature
limit at λ ≈ −1.5. Below this λ, the ordered phase is absent
and the model exhibits a single melting transition from the
vortex lattice to the disordered phase.
The nature of the new phases uncovered above is quite

clear from the data obtained for small systems. A precise
estimate of the temperature and nature of the transitions, on
the other hand, requires detailed analysis of data from large
systems and will be presented separately. Here, we make a
few comments regarding the possible nature of the tran-
sitions. The order-disorder transition for λ ¼ 0 is of the
second order type [24,45]. This order-disorder transition
continues to occur throughout the range λ− < λ < λþ and is
accompanied by a coupled proliferation of domainwalls and
vortices. However, the decay of the order parameter appears
to grow weaker with increasing λ (Fig. 2) and sharper with

FIG. 3. Top panel shows Pðmx;myÞ in the ordered (T ¼ 1.2)
and quasi-long-range ordered (T ¼ 3.0) phases for λ ¼ 100.
Bottom panel shows power-law decay of CðrÞ at different
temperatures in the latter phase for L ¼ 256. The saturation at
large r is due to the finite size of the system. η increases with
temperature as shown on the right.
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decreasing λ (Fig. 4). This observation leads us to conjecture
that the critical exponents of the transitionmight varywith λ.
The four-state (Ashkin-Teller) ferromagnet is known to
exhibit continuously varying criticality along a line of
order-disorder transitions due to an interplay between
vortices and domain walls [46]. The effect of the coupled
proliferation on the nature of the transition in the present
model, therefore, seems to be an interesting problem. In this
context, we note that claims of continuously varying
criticality in the closely related three-state chiral Pottsmodel
continues to be a controversial issue [47–49].
For λ > λþ, the order-disorder transition splits into two

and the intermediate phase exhibits quasi-long-range order.
In Zn ferromagnets with n ≥ 5, the two transitions border-
ing the quasi-long-range ordered phase are known to be of
the Berezinskii-Kosterlitz-Thouless type [19,34]. We can
expect the two transitions in the present model to be of that
type as well. In Zn models, the decay exponent η changes
from η ¼ 4=n2 at the low temperature transition to η ¼ 1=4
at the high temperature transition [34]. The values of η ∈
ð0.35; 0.75Þ obtained in the quasi-long-range ordered phase
of the present model (Fig. 3) fall beyond that range. This
deviation from the standard Zn model scenario indicates
that the bounds for η can change with vortex suppression.
Our estimate of λþ ≈ 8 is an approximate one. For λ ¼ 6,

the intermediate phase is narrow in small systems and
appears to shrink with increasing L (Fig. 2). On the other
hand, for fixed L, the extent of the phase increases with
increasing λ. This competing effect of L and λ offers two
possibilities: (a) there exists a threshold λþ, above which
the intermediate region has a nonzero extent in the
thermodynamic limit, or (b) the intermediate region shrinks
to a point in the thermodynamic limit for all finite λ and the
model exhibits an extended quasi-long-range ordered phase
only in the λ → ∞ limit. A precise estimate of λþ, there-
fore, remains an open problem and is reminiscent of the

problem regarding the location of the Lifshitz point in the
three-state chiral Potts model [50–54].
In the range λ− < λ < 0, the order-disorder transition

grows sharper with decreasing λ, hinting at the possibility
that the transition will become discontinuous before λ goes
below λ−. Such a scenario is quite plausible because an
abrupt proliferation of vortices, similar to the behavior
shown in Fig. 4, is known to induce discontinuous behavior
[26,55]. For λ < λ−, the transition from the ordered phase to
the vortex lattice phase (Fig. 4) is clearly discontinuous.
The gradual decay of hjmsvxji between the vortex lattice
phase and the disordered phase, on the other hand, suggests
that the melting transition might be second order in nature.
The universality class of the three-state Potts transition

has a ubiquitous presence in the physics of statistical
[24,56–64], quantum [65–69], and gauge systems
[34,70–73]. We have shown that the transition is driven
by a coupled proliferation of domain walls and vortices. By
manipulating the formation of the defects, we have uncov-
ered two new phases in the model. Apart from the exciting
possibility that these phases might be realizable in some of
the systems, our work provides a step towards better
understanding the role of topological defects and the
presence of topological order in classical spin models.

The authors thank Rajesh Ravindran, Ronojoy Adhikari,
Deepak Dhar, Kedar Damle, and Gautam Menon for
helpful discussions.

*sbhtta@imsc.res.in
†ray@imsc.res.in

[1] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
[2] P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, Cambridge,
England, 2000).

FIG. 4. Weak enhancement of vortices (λ ¼ −1) results in a sharp decay of S accompanied by simultaneous increase of ρdw and ρvx.
Stronger enhancement (λ ¼ −1.4) opens up an intermediate vortex lattice phase characterized by a nonzero value of hjmsvxji. With
further enhancement, the ordered phase vanishes while the vortex lattice melts at a higher temperature. Data correspond to system sizes
mentioned in Fig. 2.

PRL 116, 097206 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

097206-4

http://dx.doi.org/10.1103/RevModPhys.51.591


[3] D. R. Nelson, Defects and Geometry in Condensed Matter
Physics (Cambridge University Press, Cambridge, England,
2002).

[4] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other
Topological Defects (Cambridge University Press, 2000).

[5] G. Kohring, R. E. Shrock, and P. Wills, Phys. Rev. Lett. 57,
1358 (1986).

[6] S. R. Shenoy, Phys. Rev. B 42, 8595 (1990).
[7] S. C. Zhang, Phys. Rev. Lett. 71, 2142 (1993).
[8] P. E. Lammert, D. S. Rokhsar, and J. Toner, Phys. Rev. Lett.

70, 1650 (1993).
[9] S. Dutta and S. K. Roy, Phys. Rev. E 70, 066125 (2004).

[10] M. Lau and C. Dasgupta, J. Phys. A 21, L51 (1988).
[11] M. Kamal and G. Murthy, Phys. Rev. Lett. 71, 1911 (1993).
[12] O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70,

075104 (2004).
[13] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,

Phys. Rev. B 16, 1217 (1977).
[14] M. B. Einhorn, R. Savit, and E. Rabinovici, Nucl. Phys.

B170, 16 (1980).
[15] K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).
[16] M. R. Sadr-Lahijany, P. Ray, and H. E. Stanley, Physica

(Amsterdam) 270A, 295 (1999).
[17] E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704

(2011).
[18] S. C. Chae, N. Lee, Y. Horibe, M. Tanimura, S. Mori, B.

Gao, S. Carr, and S.-W. Cheong, Phys. Rev. Lett. 108,
167603 (2012).

[19] G. Ortiz, E. Cobanera, and Z. Nussinov, Nucl. Phys. B854,
780 (2012).

[20] M. Sato, N. Watanabe, and N. Furukawa, J. Phys. Soc. Jpn.
82, 073002 (2013).

[21] E. Fradkin and L. Susskind, Phys. Rev. D 17, 2637 (1978).
[22] K.-I. Aoki, T. Kobayashi, and H. Tomita, Int. J. Mod. Phys.

B 23, 3739 (2009).
[23] R. B. Potts, Proc. Cambridge Philos. Soc. 48, 106 (1952).
[24] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[25] E. Bittner, A. Krinner, and W. Janke, Phys. Rev. B 72,

094511 (2005).
[26] S. Sinha and S. K. Roy, Phys. Rev. E 81, 041120 (2010).
[27] J. Dubail, J. L. Jacobsen, and H. Saleur, J. Phys. A 43,

482002 (2010).
[28] D. P. Landau and K. Binder, A Guide to Monte Carlo

Simulations in Statistical Physics (Cambridge University
Press, Cambridge, England, 2014).

[29] S. Elitzur, R. B. Pearson, and J. Shigemitsu, Phys. Rev. D
19, 3698 (1979).

[30] J. Fröhlich and T. Spencer, Commun. Math. Phys. 83, 411
(1982).

[31] C. M. Lapilli, P. Pfeifer, and C. Wexler, Phys. Rev. Lett. 96,
140603 (2006).

[32] S. K. Baek, P. Minnhagen, and B. J. Kim, Phys. Rev. E 80,
060101 (2009).

[33] A. C. Van Enter, C. Külske, and A. A. Opoku, J. Phys. A 44,
475002 (2011).

[34] O. Borisenko, V. Chelnokov, G. Cortese, R. Fiore, M.
Gravina, and A. Papa, Phys. Rev. E 85, 021114 (2012).

[35] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

[36] P. Archambault, S. T. Bramwell, and P. C. W. Holdsworth,
J. Phys. A 30, 8363 (1997).

[37] Y. Kim and A. B. Harris, Phys. Rev. B 32, 4676 (1985).
[38] J. Lidmar and M. Wallin, Phys. Rev. B 55, 522 (1997).
[39] J. Hu and A. H. MacDonald, Phys. Rev. Lett. 71, 432

(1993).
[40] M. Gabay and A. Kapitulnik, Phys. Rev. Lett. 71, 2138

(1993).
[41] G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin,

and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
[42] I. Guillamón, H. Suderow, A. Fernández-Pacheco, J. Sesé,

R. Córdoba, J. M. De Teresa, M. R. Ibarra, and S. Vieira,
Nat. Phys. 5, 651 (2009).

[43] M. Zehetmayer, Sci. Rep. 5, 9244 (2015).
[44] S. C. Ganguli, H. Singh, G. Saraswat, R. Ganguly, V.

Bagwe, P. Shirage, A. Thamizhavel, and P. Raychaudhuri,
Sci. Rep. 5, 10613 (2015).

[45] R. J. Baxter, Exactly Solved Models in Statistical Mechanics
(Dover Publications, Mineola, N.Y., 2007).

[46] L. P. Kadanoff, Ann. Phys. (N.Y.) 120, 39 (1979).
[47] D. A. Huse and M. E. Fisher, Phys. Rev. Lett. 49, 793

(1982).
[48] P. Centen, V. Rittenberg, and M. Marcu, Nucl. Phys. B205,

585 (1982).
[49] H. Sato and K. Sasaki, J. Phys. Soc. Jpn. 69, 1050 (2000).
[50] S. Howes, L. P. Kadanoff, and M. Den Nijs, Nucl. Phys.

B215, 169 (1983).
[51] F. Haldane, P. Bak, and T. Bohr, Phys. Rev. B 28, 2743

(1983).
[52] H. J. Schulz, Phys. Rev. B 28, 2746 (1983).
[53] G. von Gehlen and V. Rittenberg, Nucl. Phys. B230, 455

(1984).
[54] P. M. Duxbury, J. Yeomans, and P. D. Beale, J. Phys. A 17,

L179 (1984).
[55] J. E. Van Himbergen, Phys. Rev. Lett. 53, 5 (1984).
[56] K. Binder, W. Kinzel, and D. P. Landau, Surf. Sci. 117, 232

(1982).
[57] H. Freimuth and H. Weichert, Surf. Sci. 162, 432 (1985).
[58] R. Q. Hwang, E. D. Williams, and R. L. Park, Surf. Sci. 193,

L53 (1988).
[59] R. J. Baxter, J. Phys. A 13, L61 (1980).
[60] R. van Gastel, D. Kaminski, E. Vlieg, and B. Poelsema,

Phys. Rev. Lett. 109, 195501 (2012).
[61] G. Szabó and T. Czárán, Phys. Rev. E 63, 061904 (2001).
[62] A. Szolnoki, G. Szabó, and M. Ravasz, Phys. Rev. E 71,

027102 (2005).
[63] T. Takaishi, Int. J. Mod. Phys. C 16, 1311 (2005).
[64] Y. Zhao, W. Li, B. Xi, Z. Zhang, X. Yan, S.-J. Ran, T. Liu,

and G. Su, Phys. Rev. E 87, 032151 (2013).
[65] M. Boninsegni and N. Prokof’ev, Phys. Rev. Lett. 95,

237204 (2005).
[66] P. Lecheminant and H. Nonne, Phys. Rev. B 85, 195121

(2012).
[67] Y. Zhuang, H. J. Changlani, N. M. Tubman, and T. L.

Hughes, Phys. Rev. B 92, 035154 (2015).
[68] T. Suzuki, K. Harada, H. Matsuo, S. Todo, and N.

Kawashima, Phys. Rev. B 91, 094414 (2015).
[69] Á. Rapp and G. Zaŕand, Phys. Rev. B 74, 014433 (2006).
[70] R. Savit, Rev. Mod. Phys. 52, 453 (1980).
[71] L. G. Yaffe and B. Svetitsky, Phys. Rev. D 26, 963 (1982).
[72] B. Svetitsky and L. G. Yaffe, Nucl. Phys. B210, 423 (1982).
[73] L. Lepori, G. Z. Tóth, and G. Delfino, J. Stat. Mech. 09

(2009) P11007.

PRL 116, 097206 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

097206-5

http://dx.doi.org/10.1103/PhysRevLett.57.1358
http://dx.doi.org/10.1103/PhysRevLett.57.1358
http://dx.doi.org/10.1103/PhysRevB.42.8595
http://dx.doi.org/10.1103/PhysRevLett.71.2142
http://dx.doi.org/10.1103/PhysRevLett.70.1650
http://dx.doi.org/10.1103/PhysRevLett.70.1650
http://dx.doi.org/10.1103/PhysRevE.70.066125
http://dx.doi.org/10.1088/0305-4470/21/1/009
http://dx.doi.org/10.1103/PhysRevLett.71.1911
http://dx.doi.org/10.1103/PhysRevB.70.075104
http://dx.doi.org/10.1103/PhysRevB.70.075104
http://dx.doi.org/10.1103/PhysRevB.16.1217
http://dx.doi.org/10.1016/0550-3213(80)90473-3
http://dx.doi.org/10.1016/0550-3213(80)90473-3
http://dx.doi.org/10.1103/RevModPhys.60.161
http://dx.doi.org/10.1016/S0378-4371(99)00151-X
http://dx.doi.org/10.1016/S0378-4371(99)00151-X
http://dx.doi.org/10.1103/PhysRevLett.107.155704
http://dx.doi.org/10.1103/PhysRevLett.107.155704
http://dx.doi.org/10.1103/PhysRevLett.108.167603
http://dx.doi.org/10.1103/PhysRevLett.108.167603
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.7566/JPSJ.82.073002
http://dx.doi.org/10.7566/JPSJ.82.073002
http://dx.doi.org/10.1103/PhysRevD.17.2637
http://dx.doi.org/10.1142/S0217979209053357
http://dx.doi.org/10.1142/S0217979209053357
http://dx.doi.org/10.1017/S0305004100027419
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1103/PhysRevB.72.094511
http://dx.doi.org/10.1103/PhysRevB.72.094511
http://dx.doi.org/10.1103/PhysRevE.81.041120
http://dx.doi.org/10.1088/1751-8113/43/48/482002
http://dx.doi.org/10.1088/1751-8113/43/48/482002
http://dx.doi.org/10.1103/PhysRevD.19.3698
http://dx.doi.org/10.1103/PhysRevD.19.3698
http://dx.doi.org/10.1007/BF01213610
http://dx.doi.org/10.1007/BF01213610
http://dx.doi.org/10.1103/PhysRevLett.96.140603
http://dx.doi.org/10.1103/PhysRevLett.96.140603
http://dx.doi.org/10.1103/PhysRevE.80.060101
http://dx.doi.org/10.1103/PhysRevE.80.060101
http://dx.doi.org/10.1088/1751-8113/44/47/475002
http://dx.doi.org/10.1088/1751-8113/44/47/475002
http://dx.doi.org/10.1103/PhysRevE.85.021114
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1088/0305-4470/30/24/005
http://dx.doi.org/10.1103/PhysRevB.32.4676
http://dx.doi.org/10.1103/PhysRevB.55.522
http://dx.doi.org/10.1103/PhysRevLett.71.432
http://dx.doi.org/10.1103/PhysRevLett.71.432
http://dx.doi.org/10.1103/PhysRevLett.71.2138
http://dx.doi.org/10.1103/PhysRevLett.71.2138
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1038/nphys1368
http://dx.doi.org/10.1038/srep09244
http://dx.doi.org/10.1038/srep10613
http://dx.doi.org/10.1016/0003-4916(79)90280-X
http://dx.doi.org/10.1103/PhysRevLett.49.793
http://dx.doi.org/10.1103/PhysRevLett.49.793
http://dx.doi.org/10.1016/0550-3213(82)90079-7
http://dx.doi.org/10.1016/0550-3213(82)90079-7
http://dx.doi.org/10.1143/JPSJ.69.1050
http://dx.doi.org/10.1016/0550-3213(83)90212-2
http://dx.doi.org/10.1016/0550-3213(83)90212-2
http://dx.doi.org/10.1103/PhysRevB.28.2743
http://dx.doi.org/10.1103/PhysRevB.28.2743
http://dx.doi.org/10.1103/PhysRevB.28.2746
http://dx.doi.org/10.1016/0550-3213(84)90104-4
http://dx.doi.org/10.1016/0550-3213(84)90104-4
http://dx.doi.org/10.1088/0305-4470/17/4/005
http://dx.doi.org/10.1088/0305-4470/17/4/005
http://dx.doi.org/10.1103/PhysRevLett.53.5
http://dx.doi.org/10.1016/0039-6028(82)90504-0
http://dx.doi.org/10.1016/0039-6028(82)90504-0
http://dx.doi.org/10.1016/0039-6028(85)90931-8
http://dx.doi.org/10.1016/0039-6028(88)90317-2
http://dx.doi.org/10.1016/0039-6028(88)90317-2
http://dx.doi.org/10.1088/0305-4470/13/3/007
http://dx.doi.org/10.1103/PhysRevLett.109.195501
http://dx.doi.org/10.1103/PhysRevE.63.061904
http://dx.doi.org/10.1103/PhysRevE.71.027102
http://dx.doi.org/10.1103/PhysRevE.71.027102
http://dx.doi.org/10.1142/S0129183105007923
http://dx.doi.org/10.1103/PhysRevE.87.032151
http://dx.doi.org/10.1103/PhysRevLett.95.237204
http://dx.doi.org/10.1103/PhysRevLett.95.237204
http://dx.doi.org/10.1103/PhysRevB.85.195121
http://dx.doi.org/10.1103/PhysRevB.85.195121
http://dx.doi.org/10.1103/PhysRevB.92.035154
http://dx.doi.org/10.1103/PhysRevB.91.094414
http://dx.doi.org/10.1103/PhysRevB.74.014433
http://dx.doi.org/10.1103/RevModPhys.52.453
http://dx.doi.org/10.1103/PhysRevD.26.963
http://dx.doi.org/10.1016/0550-3213(82)90172-9
http://dx.doi.org/10.1088/1742-5468/2009/11/P11007
http://dx.doi.org/10.1088/1742-5468/2009/11/P11007

