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We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model
with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order.
Using an unbiased renormalization group approach, we compute magnetic and superconducting order
parameters in the ground state. In addition to previously established regions of Néel order coexisting with
d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is
accompanied by incommensurate magnetic order.
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The two-dimensional Hubbard model is a prototype
system for competing order in layered transition metal oxide
compounds. Shortly after the discovery of high-temperature
superconductivity in cuprates, it was proposed as a key
model describing the valence electrons in the copper-oxygen
planes [1]. Indeed, the model exhibits the most prominent
ordering phenomena observed in high-Tc cuprates, namely,
antiferromagnetism and d-wave superconductivity [2].
While the magnetic order is captured already by the

conventional mean-field theory [3], superconductivity is
fluctuation-driven and hence more subtle. Nevertheless, the
emergence of d-wave superconductivity in the 2D Hubbard
model is nowadays well established [2]. In particular,
unbiased evidence for superconductivity with sizable gaps
at moderate interaction strengths has been obtained from
functional renormalization group (fRG) calculations [4–6]
and from embedded quantum cluster methods at inter-
mediate and strong coupling [7–13].
Themagnetic order is not necessarily of the commensurate

Néel type, that is, with antiparallel spin orientation between
adjacent sites. The possibility of magnetic order with gen-
erally incommensurate wave vectors away from ðπ; πÞ has
been explored by several mean-field studies [14–18],
and also by expansions in the limit of a small hole density,
where fluctuation effects were taken into account [19–21].
Incommensurate magnetic order in the two-dimensional
Hubbard model is also indicated by diverging interactions
and susceptibilities at incommensurate momenta in fRG
flows [4,22,23]. However, the competition and possible
coexistence of incommensurate magnetism and supercon-
ductivity has not yet been analyzed [24]. To do this, one
needs to access the ordered phase in a framework that
captures the fluctuations which generate d-wave supercon-
ductivity, allowing at the same time for a high-momentum
space resolution to distinguish the incommensurate ordering
wavevector from ðπ; πÞ. The latter requirement is an obstacle

for cluster methods, which have so far been restricted to
commensurate antiferromagnetism [8–10,13].
In the fRG flow, spontaneous symmetry breaking is

signaled by diverging effective interactions at a critical
energy scale Λc. In principle, the flow can be continued
below the instability scale Λc to compute order parameters
in the ordered phase [4,25,26]. However, this is rather
complicated, especially in the case of two or more order
parameters. A drastic simplification occurs if the flow below
the scale Λc is approximated by the mean-field theory
(MFT), since then order parameters can be computedwithout
dealingwith anomalous interactions [27].While fluctuations
above Λc are crucial for the generation of d-wave super-
conductivity, fluctuations below Λc are not expected to
affect ground state order parameters significantly. Recently,
a consistent fusion of the fRG flow above the scale Λc with
MFT below Λc has been formulated and used to study the
competition of antiferromagnetism and superconductivity
in the Hubbard model [28]. In the purely superconducting
regime of the ground state phase diagram, the pairing gap
computed by fRGþMFT could be compared to previous
results from a complete fRG flow with symmetry breaking
(including fluctuations below Λc) [5]. The results obtained
from the two methods agree very well. Away from half
filling, antiferromagnetic order was shown to be accompa-
nied by microscopically coexisting d-wave superconductiv-
ity, in qualitative agreement with results from a previous
fRGþMFT computation [27] and from cluster methods at
stronger interactions [8–10,13].
Here we present novel results for the two-dimensional

Hubbard model, allowing, for the first time, magnetic order
with arbitrary wave vectors and superconductivity. In
addition to the previously established regions of Néel order
coexisting with d-wave superconductivity, we find new
coexistence regions where superconductivity is accompa-
nied by incommensurate magnetic order.
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Method.—Our results are based on the fRGþMFT
method formulated in Ref. [28]. The calculation consists
of three steps. First, the two-particle vertex is computed
from a fRG flow integrated down to a scale ΛMF slightly
above the critical scale Λc. The flow is approximated by a
one-loop truncation, with a static (frequency-independent)
vertex parametrized via a decomposition in charge, mag-
netic, and pairing channels [23] with s-wave and d-wave
form factors as described in Ref. [5]. The scale dependence
defining the fRG flow is introduced by a soft frequency
cutoff regularizing the bare propagator as

GΛ
0 ðk0;kÞ ¼ ½isgnðk0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 þ Λ2

q

− ðϵk − μÞ�−1: ð1Þ
We denote the spin andmomentum dependence of the vertex
at scale Λ by ΓΛ

σ1;σ2;σ3;σ4ðk1;k2;k3;k4Þ, where the indices 1
and 2 refer to outgoing and 3 and 4 to incoming particles.
Spin-singlet pairing is driven by the singlet component of the
vertex in the Cooper channel (zero total momentum):

Vkk0 ¼ 1

2
ΓΛMF
s ðk;−k;−k0;k0Þ; ð2Þ

where ΓΛ
s ¼ ΓΛ

σ;−σ;−σ;σ − ΓΛ
σ;−σ;σ;−σ . Magnetic instabilities

with a momentumQ are generated by the magnetic compo-
nent of the vertex with momentum transfer Q, that is,

UQ;kk0 ¼ ΓΛMF
σ;−σ;σ;−σðkþQ;k0;k0 þQ;kÞ: ð3Þ

Note that ΓΛ
σ;−σ;σ;−σ ¼ ΓΛ

σ;σ;σ;σ − ΓΛ
σ;−σ;−σ;σ due to spin rota-

tion invariance.
In the second step, the irreducible vertices in the relevant

channels are computed by solving the corresponding
Bethe-Salpeter equations [28,29]. The irreducible pairing
vertex ~Vkk0 is obtained from the equation

Vkk0 ¼ ~Vkk0 −
Z

p

~VkpGΛMFðp0;pÞGΛMFð−p0;−pÞVpk0 ; ð4Þ

where GΛMFðp0;pÞ is the propagator at the scale ΛMF and
R

p is a shorthand notation for
R ½d2p=ð2πÞ2�ðdp0=2πÞ. The

irreducible magnetic vertex ~UQ;kk0 is determined from

UQ;kk0 ¼ ~UQ;kk0

þ
Z

p

~UQ;kpGΛMFðp0;pÞGΛMFðp0;pþQÞUQ;pk0 :

ð5Þ
In thiswork, we neglect self-energy contributions to the flow,
so that GΛMF is just the regularized bare propagator GΛMF

0 .
Finally, the superconducting and magnetic order param-

eters are computed by solving the mean-field Hamiltonian
with the irreducible vertex parts ~Vkk0 and ~UQ;kk0 as
effective interactions. The superconducting order parameter
is given by the gap function

Δk ¼
Z

d2k0

ð2πÞ2
~Vkk0 hpk0 i; ð6Þ

where pk ¼ a−k↓ak↑ is the Cooper pair annihilation
operator. The phase of the superconducting order can be
chosen such that Δk is real. Concerning the magnetic order,
we restrict our analysis to spiral states, as described by the
order parameter

Ak ¼
Z

d2k0

ð2πÞ2
~UQ;kk0 hmk0 i; ð7Þ

where mk ¼ a†k↑akþQ↓. For Q ¼ ðπ; πÞ, the spiral order is
equivalent to Néel order with a staggered magnetization in
the xy plane. There are several mean-field studies of spiral
magnetic order in the two-dimensional Hubbard model
[17,18]. A frequently discussed alternative is collinear
order [14,15], especially in combination with pronounced
charge stripes [34–36]. In a spiral state, the amplitude of the
magnetization is homogeneous; only the orientation varies.
Hence, the magnetic order entails an energy gain every-
where in the system. By contrast, collinear order neces-
sarily involves regions with a reduced magnetization,
where the energy gain from the order is also reduced.
Incommensurate collinear order is therefore expected to be
favorable only in the form of sharply defined charged
domain walls between antiferromagnetic regions [14,15].
In the moderate interaction regime investigated here, such
pronounced real space profiles seem unfavorable, since
they cost a lot of kinetic (hopping) energy.
A mean-field decoupling of the reduced effective inter-

actions yields the mean-field Hamiltonian

HMF ¼
X

k;σ

ϵka
†
kσakσ þ

X

k

Akm
†
k þ A�

kmk − A�
khmki

þ
X

k

Δkp
†
k þ Δ�

kpk − Δ�
khpki: ð8Þ

For the Hubbard model with nearest- and next-to-nearest-
neighbor hopping on a square lattice, the dispersion relation
is ϵk ¼−2tðcoskxþ coskyÞ−4t0 coskx cosky. UsingNambu
spinors Ψk ¼ ðak↑; a†−k↓; akþQ↓; a

†
−k−Q↑Þ, the mean-field

Hamiltonian can be written in the form HMF ¼
1
2

P

kΨ
†
kMkΨk þ const, where Mk is a Hermitian 4 × 4

matrix. HMF can thus be diagonalized by a 4 × 4 unitary
(generalized Bogoliubov) transformation, and the resulting
gap equations can be solved numerically by iteration.
Occasionally, two distinct locally stable solutions of the
gap equations are found. One then has to compute the corres-
ponding free energies to discriminate globally stable from
metastable states.
Results.—We have computed the magnetic and super-

conducting order parameters in the ground state of the two-
dimensional Hubbard model at and near half filling for
weak to moderate interaction strengths U=t ¼ 2, 3, 4 for a
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small next-to-nearest-neighbor hopping amplitude t0=t ¼
−0.15 and for U=t ¼ 3 also for the special particle-hole
symmetric case t0 ¼ 0. We now present our results for
U=t ¼ 3 and t0=t ¼ −0.15 and subsequently discuss simi-
larities and differences found for the other choices ofU and
t0 [37]. In the following, we set t ¼ 1.
In Fig. 1, we show the amplitudes of the magnetic

and superconducting order parameters, A ¼ maxkAk and
Δ ¼ maxkΔk, respectively, as a function of the electron
density. The magnetic order is of the Néel type
[Q ¼ ðπ; πÞ] at half filling. The Néel order persists on
the electron-doped side (n > 1) and also for small and
moderate hole doping (0.9 < n < 1). The stability of
commensurate antiferromagnetic order on the electron-
doped side is generally expected [38]. For n < 1 excitations
in hole pockets near the Brillouin zone diagonal could
destabilize the commensurate state even for small hole
doping for small jt0j and/or large U [20]. At n ¼ 0.9, a
first-order transition to an incommensurate spiral state
occurs, with a wave vector of the form Q ¼ ðπ − 2πη; πÞ
or equivalent (by symmetry) wave vectors ðπ þ 2πη; πÞ or
ðπ; π � 2πηÞ. The magnetic order is completely suppressed
by superconductivity at van Hove filling (n ¼ 0.87) but
then reemerges for lower densities. The magnetic transition
at n ¼ 0.73 is of the weak first-order type. The incom-
mensurability η is plotted as a function of the density in
Fig. 2. It jumps from zero to a small finite value at the
commensurate-incommensurate transition and then incre-
ases monotonically upon further doping until the magnetic
order disappears at n ¼ 0.73. The chemical potential μðnÞ,
which is also plotted in Fig. 2, exhibits a discontinuity due
to the charge gap at half filling. In other words, the density
n is pinned to half filling for a range of chemical potentials
between −0.37 and −0.245. Comparing to the purely
magnetic solution (excluding superconductivity), which

is also shown in Fig. 1, one can see that superconductivity
has little influence on the magnetic order in the regime
around half filling where it is commensurate. The incom-
mensurate magnetic order on the hole-doped side is
strongly suppressed by pairing in the vicinity of van
Hove filling. At van Hove filling, superconductivity elim-
inates the magnetic order completely. By contrast, in the
overdoped regime well below van Hove filling, incom-
mensurate magnetic order and superconductivity coexist
without suppressing each other significantly.
The pairing gapΔk is finite for all densities except at half

filling, where the Fermi surface is fully gapped by the
antiferromagnetic order. Hence, away from half filling,
magnetic order always allows for coexisting superconduc-
tivity. This is easily understood as follows. Doping the half-
filled antiferromagnet by additional electrons or holes leads
to electron or hole pockets (see the insets in Fig. 1). The
ubiquitous attractive d-wave pairing interaction inevitably
generates a Cooper instability at the (small) Fermi surfaces
enclosing these pockets and, thus, superconductivity. The
hole pockets for n < 1 are centered around the nodes of the
pairing gap Δk, while the electron pockets for n > 1 are in
the antinodal region near ðπ; 0Þ and ð0; πÞ, where the gap is
maximal. Hence, the onset of pairing around half filling
is much steeper on the electron-doped side (see Fig. 1).
This is in agreement with recent spin-fluctuation exchange
calculations in the weak coupling regime [39] but differs
from the behavior found in a strong coupling analysis of
electrons moving in an antiferromagnetic spin background.
In the latter case, pairing is mediated mostly by transverse
spin fluctuations (magnons), which couple very weakly
to electrons in the antinodal region, so that the pairing
interaction is very small for low electron doping [40]. By
contrast, at moderate coupling also longitudinal spin
fluctuations contribute and yield a sizable pairing inter-
action in the antinodal region [39].
The maximal gap amplitude at ”optimal” hole doping is

significantly larger than the maximal gap on the electron-
doped side, in agreement with the gap hierarchy in cuprate
superconductors. The maximal gap on the hole-doped side
is situated slightly above van Hove filling, where the
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FIG. 1. Amplitudes of magnetic and superconducting gap
functions in the ground state of the two-dimensional Hubbard
model as a function of the electron density n, for U ¼ 3 and
t0 ¼ −0.15. The amplitude of the magnetic gap function obtained
from a purely magnetic solution is also shown for comparison,
with corresponding hole and electron pockets at n ¼ 0.96 and
n ¼ 1.05 in the left and right insets, respectively. First-order
transitions (see broken lines near n ¼ 0.9 and n ¼ 1.06) lead to
small density intervals where no homogeneous solution exists.
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FIG. 2. Incommensurability η and chemical potential μ as a
function of the density for the same parameters as in Fig. 1.
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magnetic order is already quite weak. The gap decreases
smoothly in the ”overdoped” regime, due to a decrease of
the pairing interaction and the density of states.
The leading order parameter is often guessed from the

leading divergence of the effective interactions in the fRG
flow upon approaching the critical scale Λc [4]. This is
usually correct, but there are exceptions. In particular,
around van Hove filling, we find superconductivity as the
dominant order, although the leading divergence occurs
actually in the magnetic channel (see Ref. [5], where the
fRG flow was studied for the same parameters).
A major novel result of our work is the coexistence of

superconductivity with incommensurate magnetic order
in a regime where a purely superconducting state was
expected, since the hole doping is already quite large. It is
therefore interesting to look at the condensation energy
gained by symmetry breaking in the incommensurate
regime. In Fig. 3, we plot the total condensation energy
EðA;ΔÞ − Eð0; 0Þ gained by magnetism and pairing. We
also plot the additional energy gain due to the magnetic
order compared to a purely superconducting state,
EðA;ΔÞ − Eð0;Δ0Þ, where Δ0 is the pairing gap in the
absence of magnetism. One can see that this additional
energy gain is tiny in the incommensurate regime
(μ < −0.57), even for densities where the size of the
magnetic order parameter is comparable to the pairing
gap. Hence, the magnetic order in this regime is extremely
delicate, a kind of “gossamer magnetism,” reminiscent of
Laughlin’s “gossamer superconductivity” in lightly doped
Mott insulators [41]. The quasidegeneracy of a purely
superconducting state and a state with coexisting magnet-
ism can be expected to lead to intriguing fluctuation effects.
Let us now compare the above results to those obtained

for other choices of U, as presented in Supplemental
Material [37]. For U ¼ 2 and t0 ¼ −0.15, the ground state
is purely superconducting for all densities, with a small
d-wave gap which is maximal slightly above van Hove

filling. Magnetic order occurs only if superconductivity is
switched off. This is expected in the weak coupling limit
in the absence of nesting (for finite t0). For U ¼ 4 and
t0 ¼ −0.15, there is no homogeneous solution in the density
range 0.88 < n < 1, which includes also van Hove filling.
Hence, a system with an average density in that interval will
undergo phase separation in regions with distinct densities
n ¼ 1 and n ¼ 0.88 or form a more complex type of order.
For smaller densities, incommensurate magnetic order
coexisting with d-wave superconductivity is found, again
with a tiny energy gain from the magnetic order. Hence,
our main result, the coexistence of superconductivity with
a very delicate incommensurate magnetic order at sizable
hole doping, is robust with respect to an increase of U. On
the electron-doped side, there are no qualitative differences
compared to U ¼ 3, except for a tiny incommensurate
region at the edge of the magnetic regime.
For t0 ¼ 0, the Hubbard model is particle-hole symmet-

ric; that is, the properties for densities n and 2 − n are
equivalent. Because of perfect nesting, the system is a
Néel antiferromagnet at half filling for any U > 0. There
is no homogeneous solution in a density range around half
filling, on both the electron- and hole-doped sides. For
larger doping, there is a small region exhibiting incom-
mensurate magnetism in coexistence with d-wave super-
conductivity and a broader purely superconducting region.
While the magnetic order parameter at half filling has
almost the same size for t0 ¼ 0 and t0 ¼ −0.15, the largest
achievable pairing gap (at optimal doping) is much smaller
for t0 ¼ 0. A sizable next-to-nearest-neighbor hopping thus
helps to promote superconductivity with a large gap. This
was already revealed in a previous fRG study [5] and in a
recent quantum cluster calculation [13] and is in qualitative
agreement with the empirical trend in cuprates [42].
Summary.—We have analyzed the competition between

magnetism and superconductivity in the ground state of the
two-dimensional Hubbard model, including the possibility
of incommensurate spiral magnetic order. Using a combi-
nation of fRG and mean-field theory, fluctuation-driven
order is captured without any bias for a specific instability.
Charge, spin, and pairing channels are treated on equal
footing. Away from half filling, magnetic order always
coexists with superconductivity, as a consequence of a
Cooper instability in electron or hole pockets. For t0 < 0,
both magnetism and superconductivity exhibit a pro-
nounced particle-hole asymmetry. On the hole-doped side,
superconductivity has larger maximal gaps, and it coexists
with incommensurate magnetism at moderate doping,
except at van Hove filling, where magnetic order is fully
suppressed by pairing. The incommensurate magnetic
order is gossamerlike in the sense that it is stabilized only
by a tiny energy gain with respect to a purely super-
conducting state. Rather fragile incommensurate magnetic
order has actually been observed at the bottom of the super-
conducting dome in La2−xSrxCuO4 [43] and YBa2Cu3O6þx
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FIG. 3. Total condensation energy EðA;ΔÞ − Eð0; 0Þ and
relative magnetic condensation energy EðA;ΔÞ − Eð0;Δ0Þ as a
function of the chemical potential μ. The inset is a zoom into the
region with incommensurate magnetic order. The model param-
eters are the same as in Fig. 1.
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[44,45]. Suppressing superconductivity by a strong mag-
netic field would stabilize that order. Indeed, in a very
recent high field experiment, a Hall coefficient consistent
with hole pockets arising from possible spin-density waves
was observed in YBa2Cu3O6þx at much higher doping than
previously [46].
Our analysis was restricted to weak and moderate

interaction strengths. The method may be extended to
strong interactions by using the dynamical mean-field
theory as a starting point for the fRG flow [47].
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