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We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels.
We are interested in the regime where the time delay in communication between the nodes is significant.
This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a
time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger
equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream
of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate
this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms
coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a
time delay as an instance of a quantum feedback problem.
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Introduction.—Wiring up increasingly complex quantum
devices from basic modules is central in the effort to build
large scale quantum circuits [1]. Quantum optical systems
provide a natural framework to implement such a modular
approach as a photonic quantum circuit [2,3]. Here, left- and
right-propagating modes in optical fibers or waveguides
provide the channels for communication between the nodes,
and represent input and output ports to drive and observe the
circuit. Such networks can involve quantum communication
between “local” nodes, or in a distributed network between
“distant” nodes, where time delays can be important. Recent
advances in building small scale quantum processors with
atoms and ions [4], and the development of atom-photon
interfaces in circuit QED [5], or in coupling atoms to
photonic nanostructures [6–8], have demonstrated—at least
on a conceptual level—the basic building blocks for such a
scalable photonic network [9,10].
On the theory side this raises the question of formulating

a quantum theory of photonic quantum networks. Such a
theory must account for the quantum many-body dynamics
induced by multiple photon exchanges between the nodes,
and relating the input and output quantum signals on the
level of quantum states. Theoretical quantum optics has
provided tools for modeling Markovian quantum networks,
i.e., when time delays can be ignored [12,13]. It is the
purpose of the present work to address non-Markovian
aspects of the dynamics introduced by these time delays.
This refers to the retarded interaction between the nodes of
the network involving the exchange of (possibly many)
photons, and also addresses the problem of quantum feed-
back [14], where the quantum signal emitted from a system
is fed back with a time delay [16]. Our approach is based on
solving the quantum stochastic Schrödinger equation
(QSSE) [13] with time delays based on (continuous) matrix
product states (MPSs) [20–24], as developed originally in a

condensed matter context [25–31]. This technique allows
for an efficient description of entanglement, which scales
with finite time delays between the nodes of the network
and the stream of photons propagating in the quantum
channels, including the quantum fields and relevant observ-
ables at the output of the photonic quantum network.
Quantum optical model.—Our approach is best illus-

trated for the paradigmatic model [32] consisting of two
distant nodes n ¼ 1, 2 connected to an infinite waveguide,
representing the input and output ports of our system
[cf. Fig. 1(a)]. The nodes are located at positions x1 < x2,
and there is a time delay τ ¼ ðx2 − x1Þ=v≡ d=v associated
with photon exchange with v the velocity of light. Our
treatment considers photons in a bandwidth B around some
mean optical frequency ω̄. To describe the dynamics, we
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FIG. 1. Basic building blocks of a photonic quantum circuit.
(a) Two distant driven atoms coupled to a one-dimensional
waveguide (quantum channel). While (a) is a spatial representa-
tion of the circuit, (b) is the corresponding time interpretation
according to a (discretized) QSSE. The nodes interact sequen-
tially with photon modes defined for time bins according to the
stroboscopic map (3) (see text). The time delay τ > 0 corresponds
to a nonlocal interaction in time. (c) Delayed quantum feedback,
realized by a driven atom in front of a mirror, and (d) the time bin
interpretation of the QSSE.

PRL 116, 093601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

0031-9007=16=116(9)=093601(6) 093601-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.093601
http://dx.doi.org/10.1103/PhysRevLett.116.093601
http://dx.doi.org/10.1103/PhysRevLett.116.093601
http://dx.doi.org/10.1103/PhysRevLett.116.093601


follow the familiar quantum optical formulation [13,33]
and write a QSSE iℏðd=dtÞjΨi ¼ HðtÞjΨi for the total
system of the nodes and waveguide. The total Hamiltonian
is denoted by HðtÞ ¼ Hsys þHintðtÞ with Hsys ¼

P
nH

ðnÞ
sys

the sum of the Hamiltonian of the nodes. The interaction
term is given by

HintðtÞ ¼ iℏ(ð ffiffiffiffiffi
γR

p
b†RðtÞ þ

ffiffiffiffiffi
γL

p
b†Lðt − τÞeiϕÞc1 − H:c:)

þ iℏ(ð ffiffiffiffiffi
γR

p
b†Rðt − τÞeiϕ þ ffiffiffiffiffi

γL
p

b†LðtÞÞc2 − H:c:);

ð1Þ
which describes the emission and absorption of photons by
the nodes n ¼ 1, 2 into the left- and right-propagatingmodes
i ¼ L, R of the waveguide within a rotating wave approxi-
mation. Here, the operators bRðtÞ and bLðtÞ are defined by

biðtÞ ¼
1ffiffiffiffiffiffi
2π

p
Z
B
dωbiðωÞe−iðω−ω̄Þt ði ¼ L;RÞ

with biðωÞ [b†i ðωÞ] the destruction [creation] operators of
photons of frequency ω, satisfying ½biðωÞ; b†i0 ðω0Þ� ¼
δi;i0δðω − ω0Þ. In quantum optics they have the meaning
of quantum noise operators with the white noise bosonic
commutation relations ½biðtÞ; b†i0 ðt0Þ� ¼ δi;i0δðt − t0Þ, which
lead to the interpretation as a QSSE. The photon propagation
phase is denoted by ϕ ¼ −ω̄τ. The operators c1=2 are the
transition operators for the nodes in the emission of a photon.
The coupling to the left- and right-propagating modes is
given by the decay rates γL and γR into the radiation modes
of the waveguide, respectively (γ ≡ γR þ γL). We note that
for a chiral coupling, as naturally realized in nanophotonics
[6–8], we have γR ≠ γL. While the assumptions behind the
derivation of the QSSE are still Markovian in nature [13,34],
it is the time delays, reflecting the retardation between the
absorption and emission events, that introduce a non-
Markovian element into the dynamics [see Fig. 1(b)].
The simplest physical realization of two nodes (n ¼ 1, 2)

is given by coherently driven two level systems with
ground and excited states jgni, jeni [6]. The corresponding
system Hamiltonian is in a rotating frame HðnÞ

sys ¼
−ℏΔnjenihenj − ðℏ=2ÞðΩnjgnihenj þ H:c:Þ with Δn ¼
ωL−ωeg the detuning of the driving laser from atomic
resonance, Ωn the Rabi frequency, and cn ¼ jgnihenj. We
return to this example below in some detail.
In the Markovian limit τ → 0þ, the above QSSE can be

interpreted according to Stratonovich quantum stochastic
calculus [13,34]. There are well established techniques to
convert this QSSE to Ito calculus, and eventually to a
master equation for the dynamics of the reduced state of
the nodes ρsys tracing over the waveguide as a quantum
reservoir. For vacuum inputs we obtain

d
dt
ρsys¼−

i
ℏ
½Hsys;ρsys�þγðD½c1�ρsysþD½c2�ρsysÞ

−ðγLeiϕ½c1;ρsysc†2�þγReiϕ½c2;ρsysc†1�−H:c:Þ ð2Þ

with D½c�ρ≡ cρc† − 1
2
fc†c; ρg [35,36]. We note that

Eq. (2) contains instantaneous dipole-dipole interactions,
and collective atomic decay terms related to the 1D
character of the reservoir. For the case of symmetric decay,
γL ¼ γR, Eq. (2) describes super- and subradiant decay
processes [37]. In the limit of purely unidirectional cou-
plings, γL ¼ 0, where node 1 drives node 2, but there is no
back scattering from 2 to 1, Eq. (2) reduces to the master
equation for a cascaded quantum system, as first derived by
Carmichael and Gardiner [35,36]. We note that for the
cascaded case a finite time delay τ > 0 can always be
absorbed in a retarded time for node 2; i.e., the system
dynamics can be described by a Markovian master equa-
tion [12,13]. This is not the case, however, when we allow
for back scattering or two-way communication. Below we
address this problem by solving the QSSE for τ > 0, where
a Markovian master equation of the type (2) does not exist.
To give a meaning to a QSSE with time delays and to

prepare our MPS formulation to its solution we find it
convenient to discretize time in small steps Δt, that is
tk ¼ kΔt with k ∈ Z. We represent the time evolution as a
dynamical map jΨðtkþ1Þi ¼ UkjΨðtkÞi. We choose a time
step that is small compared to the time scale of the system
evolution (including γL;RΔt ≪ 1) but large compared to the
inverse bandwidth B of the waveguide. Moreover, we
conveniently choose Δt to be a unit fraction of the delay
time τ ¼ lΔt. Thus, we have

jΨðtkþ1Þi ¼ UkjΨðtkÞi

≡ exp
�
−
i
ℏ
HsysðtkÞΔtþOk;1 þOk;2

�
jΨðtkÞi

ð3Þ
with

Ok;1¼ð ffiffiffiffiffi
γR

p
ΔB†

RðtkÞþ
ffiffiffiffiffi
γL

p
ΔB†

Lðtk−lÞeiϕÞc1−H:c:;

Ok;2¼ð ffiffiffiffiffi
γR

p
ΔB†

Rðtk−lÞeiϕþ
ffiffiffiffiffi
γL

p
ΔB†

LðtkÞÞc2−H:c: ð4Þ
Here, we have defined quantum noise incrementsΔBiðtkÞ ¼R tkþ1
tk dtbiðtÞ. They obey (up to a normalization factor) the
bosonic commutation relations ½ΔBiðtkÞ;ΔB†

i0 ðtk0 Þ� ¼
Δtδi;i0δk;k0 and can be interpreted as annihilation (creation)
operators for photons in the time bin k. Since we have two
channels (L, R) each time bin contains two such modes. The
above equation states that in time step tk → tkþ1 the first
node can emit a photon into two modes, the Lmode of bin k
and the R mode of bin k − l, and vice versa for the second
node. Thus, we can visualize the time evolution as a
conveyor belt of time bins representing the modes
[cf. Fig. 1(c)]: each time step shifts this conveyor belt by
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one unit, and after l steps the first (second) system interacts
with the photons emitted by the second (first) one.
Matrix product state description.—In the following we

employ a MPS representation of jΨðtÞi. In a condensed
matter context time-dependent density matrix renormaliza-
tion group techniques have been developed to integrate the
many-particle Schrödinger equation in 1D systems, and
ladder geometries, and a close relationship between MPSs
and the output fields from photonic systems has been
established [20–24]. Here, we build on these developments
to integrate Eq. (3) efficiently and for long times, approach-
ing the steady state.
We assume that the full state is initially (t ¼ 0) com-

pletely uncorrelated, that is, jΨðt ¼ 0Þi ¼ jψSi⊗
p
jϕpi,

where jψSi denotes the initial state of the nodes (emitters)
and jϕpi the state of the photons in time bin p. In particular
this includes a waveguide initially in the vacuum state
jϕpi ¼ jvacpi with ΔBL=RðtpÞjvacpi ¼ 0. The strobo-
scopic evolution until a time tk gives a state jΨðtkÞi ¼
jϕinðtkÞi ⊗ jψðtkÞi, where jϕinðtkÞi ¼ ⊗

p≥k
jϕpi is the

remaining input state and

jψðtkÞi ¼
X
iS;fipg

ψ iS;ik−1;ik−2;���jiS; ik−1; ik−2 � � �i ð5Þ

is the entangled state of the nodes and radiation field.
Here, iS and ip label the basis states in the Hilbert space of
the nodes and the time bin p, respectively:

jipi≡ jiLp; iRpi ¼
ðΔB†

LÞiLpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔtiLp iLq !

q ðΔB†
RÞiRpffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔtiRp iRq !
q jvacpi; ð6Þ

where iLðRÞp ¼ 0; 1; 2;… denote the number of photons in
the LðRÞ mode in time bin p. The modes p ∈
ðk − 1;…; k − lÞ represent the photonic state in the quan-
tum circuit, while p < k − l labels the modes of the output
field [cf. Fig. 1(b)].
In a MPS form [26,28–30,38] we can write these

amplitudes as

ψ iS;ik−1;��� ¼ trfA½S�iSA½k − 1�ik−1A½k − 2�ik−2 � � �g; ð7Þ
where A½p�ip are Dp ×Dp−1 matrices and Dp is the bond
dimension for a bipartite cut between time bins p and pþ 1.
We emphasize that the quantum state (5), and its MPS
decomposition (7), refer to an entangled state of nodes and
photons in time bins. This is in contrast to condensed matter
systems where the many-body wave function refers to spatial
correlations at a given time. The stroboscopic evolution of
the full state from tk to tkþ1 via Eq. (4) involves an
interaction of each node with two time-bin modes of the
radiation fields, with time delays appearing as “long range
interactions.” While instantaneous (short range) interactions
are standard to implement in the MPS formalism [28,29],

time-delayed (long range) interactions can be handled by
methods introduced in Refs. [39–41]. In each propagation
step the system gets entangled with the time bin k such that
theMPS (7) grows by one site (A½k�). The update of theMPS
(7) in the kth time step according to the interaction of the
system with the delayed feedback in time bin k − l involves
all matrices representing the field in the circuits, that is, the
time bins in ½tk − τ; tk�, but does not involve the matrices for
time bins p < k − l. For the technical details on updating
the MPS in each time step we refer the reader to the
Supplemental Material [33].
We now illustrate this method with two examples: (i) two

coherently driven, distant atoms interacting via the wave-
guide as discussed above, and (ii) a single driven atom
coupled to a waveguide terminated by a distant mirror as an
illustration of a quantum feedback problem. In contrast to
previous work [32,37,42–55], which includes transfer
matrix and Wigner-Weisskopf type approaches applicable
to a single or a few excitations propagating through the
system, we are interested here in strongly driven systems
with multiple photon exchange resulting in significant
entanglement. The problem of delayed quantum feedback
was addressed recently by Grimsmo [56] in the transient
regime. This approach is based on a replication of the
system Hilbert space after each delay cycle, which allows
for an exact evolution for a few τ. The exponential increase
of the replicated Hilbert space however inhibits a propa-
gation to long times. Our approach is complementary to
this as we will be able to follow the evolution of the circuit
for long times, reaching the steady state.
Two driven distant atoms.—Figures 2(a) and 2(b) show

results for the time evolution of two atoms driven through
the waveguide from the left input port, which are separated
by a distance corresponding to a delay γτ ¼ 5, and a
propagation phase ϕ ¼ π=2 [see Fig. 1(b)]. Figure 2(a)
plots the atomic excitation probabilities and the mean
photon number in the waveguide between the two atoms
(delay line). Starting at time t ¼ 0 the atoms are coupled to
the waveguide. They will “not see each other” for times
0 ≤ t < τ, and thus obey Rabi dynamics described by the
single atom Bloch equations. For t > τ the atoms interact
both with the coherent drive and also with the time-delayed
nonclassical stream of photons emitted by the other atom.
We assume a driving laser field from the left and thus the
output field of atom 1 acquires the same phase as the laser,
when traveling to atom 2. On the other hand the output field
of atom 2 is out of phase with respect to the coherent drive
by 2ϕ when it reaches atom 1. This causes destructive
and constructive interference in the atomic populations for
t > τ in Fig. 2(a).
In Fig. 2(b) we plot the time evolution of the

entanglement of the time bins in terms of the entropy
SðρAÞ≡ −TrfρA log2 ρAg of the reduced state ρAðtÞ ¼
TrĀfjΨðtÞihΨðtÞjg. Here, A refers to the radiation field in
time bins ½t − tA; t� [see Fig. 1(b)], while A refers to the
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field in the complement ofA. Note that for tA ¼ 0 the state
ρA ≡ ρsys corresponds to the reduced density operator of
the atoms, and SðρsysÞ quantifies the atom-photon entan-
glement, as the total state jΨðtÞi is pure. On the other hand,
for tA ¼ τ, the state ρA ≡ ρcircuit includes also the radiation
field in the delay line, and thus SðρcircuitÞ quantifies the
entanglement of the circuit with the output field [57].
SðρcircuitÞ increases approximately linearly during the first
round-trip time, but does not increase afterwards. The
necessary bond dimension to represent the state, Dmax,
scales thus exponentially with γτ, which limits the achiev-
able time delays. However, for a fixed τ, the bond
dimension does not increase with the total integration time,
allowing us to reach the steady state. This can be under-
stood by noting that each photon is emitted as a super-
position state into the left- and right-moving channel,
and contributes an entropy S1 ¼ −ðγL=γÞ log2ðγL=γÞ −
ðγR=γÞ log2ðγR=γÞ to the total entanglement of the circuit
for a time τ after its emission, i.e., before the photon leaves
the circuit [33]. SðρcircuitÞ thus scales linearly with the
number of photons in the delay line [58]. In Fig. 2(c) we
plot this photon number distribution in the steady state for
increasing τ. Figure 2(d) shows the corresponding increase
of SðρcircuitÞ, and the role of chirality γL ≠ γR. The entropy
per photon S1 is maximal for a bidirectional system

ðγL ¼ γRÞ, and vanishes in the unidirectional case
(γR ¼ 0), such that in the cascaded limit SðρcircuitÞ becomes
independent of τ. This connects our approach to the well
known fact that time delays can be trivially eliminated in
the cascaded limit [35,36]. The vanishing of SðρcircuitÞ in
Fig. 2(d) for the unidirectional coupling γR ¼ 0 indicates
the existence of a dark (pure) quantum state as the steady
state of the circuit. The formation as quantum dimers of
two-level atoms has been discussed in the Markovian case
[59,60], and these persist as dimer correlations shifted by
the time delay between the two atoms even for τ > 0.
Quantum feedback—atom in front of a mirror.—Finally,

we illustrate our approach for the example of a driven atom
in front of a mirror at distance d shown in Fig. 1(c) (see also
Ref. [56]), and calculate the properties of the atomic steady
state and the corresponding output field (Fig. 3). The
quantum stochastic Hamiltonian is given by Ref. [33]

HintðtÞ ¼ iℏ½ð ffiffiffiffiffi
γL

p
b†ðtÞ þ ffiffiffiffiffi

γR
p

b†ðt − τÞeiϕÞjgihej − H:c:�:
ð8Þ

The parameters characterizing this setup are the delay time
τ ¼ 2d=v and the round-trip phase ϕ ¼ π − ω̄τ. In the
Markovian limit τ → 0þ, the system is described by the
well known optical Bloch equation, with the effective decay
rate γeff ¼ 2γ cos2ðϕ=2Þ and effective detuning Δeff ¼ Δ −
ðγ=2Þ sinðϕÞ (for γL ¼ γR) [61–64]. In this limit the output
power spectrum in the steady state, SðνÞ, shows a Mollow
triplet [65] and the autocorrelaltion function g2ðtÞ exhibits
photon antibunching. With our methods we can go system-
atically beyond this limit and calculate these steady state
quantities for long delays τ ≫ γ−1;Ω−1 (Fig. 3). As depicted
in Fig. 3(b) with increasing τ the incoherent part of the
spectrum develops a series of peaks at ν ¼ ðϕþ 2πZÞ=τ.

FIG. 3. Steady state properties of the output field for different
delays γτ and feedback phases ϕ (γL ¼ γR ¼ γ=2). (a) Incoherent
part of the output field spectrum as a function of the feedback
phase for γτ ¼ 0.2, 2, 4 (from top to bottom). (b) Autocorrelation
function of the output field for γτ ¼ 6 as a function of ϕ and
(c) for different delay times at ϕ ¼ π=2. The parameters are
γΔt ¼ 0.1, Dmax ¼ 50. Steady state obtained by evolution to
tmax ¼ 200=γ, with Ω ¼ γ and Δ ¼ 0.
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FIG. 2. Two driven two-level atoms coupled to a waveguide
[cf. Fig. 1(a)]. (a) Excitation probabilities of atoms 1 and 2 (solid
and dashed black lines, respectively) and the photon number in
the waveguide between the atoms (red) as a function of time for
γτ ¼ 5 and jΩj ¼ 1.5γ. Vertical dashed lines indicate multiples of
the delay time. (b) Entanglement entropy SðρAÞ of the atoms and
radiation field in the interval ½t − tA; t� as a function of time. The
line at tA ¼ 0 gives the entanglement of the atoms with the entire
radiation field, while the line at tA ¼ τ ¼ 5=γ corresponds to the
entanglement of the entire circuit with the output field. (c) Prob-
abilities pN for having N photons (on top of the coherent driving
field) in the delay line in the steady state (calculated by time
evolution to tmax ¼ 200=γ). (d) Entanglement entropy of the
entire circuit with the output field in the steady state for
asymmetric coupling γL=R ¼ γð1� χÞ=2. Unless otherwise stated
the parameters in (a)–(d) are γL ¼ γR ≡ γ=2, γτ ¼ 5, ϕ ¼ π=2,
Ω1 ¼ Ω2eiϕ ¼ 1.5γ, Δ ¼ 0, γΔt ¼ 0.1, Dmax ¼ 256.
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This reflects the coherence of photons that are emitted in a
superposition of states corresponding to propagation towards
and away from the mirror, resulting in correlations of time
bins separated by τ. As shown in Fig. 3(c), g2ðtÞ also reveals
long time correlations g2ðτÞ < 1. This reduced probability of
detecting two photons delayed by τ can be traced back to the
antibunching of photons emitted towards and away from the
mirror. Moreover, depending on the phase of the feedback ϕ,
g2ðt ¼ 0Þ can change from the well known antibunching dip
½g2ð0Þ < 1� to a bunching peak ½g2ð0Þ > 1�, where photons
in the feedback line interfere with the emission of photons
directly into the output port [Fig. 3(c)].
In summary, we have developed a MPS approach to

describe the dynamics of photonic quantum networks with
time delays, and quantum feedback. This provides a
systematic framework for the simulation of nonlinear
photonic quantum circuits and quantum optical devices
with several input and output channels [33,66]. With
increasing complexity of the circuit, and the associated
scaling of computational resources (see Ref. [33]), a
classical simulation will eventually be inefficient, or
impossible, which is, of course, the original motivation
for the development of quantum circuits and devices.

We thank H. Carmichael, C. W. Gardiner, A. M. Läuchli,
T. Ramos, and B. Vermersch for discussions. Work at
Innsbruck is supported by the ERC Synergy Grant
UQUAM, the Austrian Science Fund through SFB
FOQUS, and the EU FET Proactive Initiative SIQS. The
authors thank the Solvay Institute Brussels for hospitality.

[1] H. J. Kimble, Nature (London) 453, 1023 (2008).
[2] D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath,

S. M. Clark, and C. Monroe, Nat. Phys. 11, 37 (2014).
[3] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451,

664 (2008).
[4] L. M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209

(2010).
[5] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V.

Vuletic, and M. Lukin, Nature (London) 508, 241 (2014).
[6] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A.

Rauschenbeutel, Nat. Commun. 5, 5713 (2014).
[7] I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A.

Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee,
J. D. Song, S. Stobbe, and P. Lodahl, Nat. Nanotechnol. 10,
775 (2015).

[8] A. Goban, C. L. Hung, S. P. Yu, J. D. Hood, J. A. Muniz,
J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi,
D. E. Chang, O. Painter, and H. J. Kimble, Nat. Commun.
5, 3808 (2014).

[9] C. Santori, J. S. Pelc, R. G. Beausoleil, N. Tezak, R.
Hamerly, and H. Mabuchi, Phys. Rev. Applied 1, 054005
(2014).

[10] A theory of Quantum Spin-Circuits with Non-Markovian
dynamics including a study of quantum spin dimers has
been developed in [11].

[11] T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and P. Zoller,
arXiv:1602.00926.

[12] C. Gardiner and P. Zoller, The Quantum World of Ultra-
Cold Atoms and Light Book I: Foundations of Quantum
Optics, 1st ed. (Imperial College Press, London, 2014).

[13] C. Gardiner and P. Zoller, The Quantum World of Ultra-
Cold Atoms and Light Book II: The Physics of Quantum-
Optical Devices, 1st ed. (Imperial College Press, London,
2015).

[14] We contrast this to feedback where a measurement is
performed and we act back on the quantum system [15].

[15] H. M. Wiseman and G. J. Milburn, Quantum Measurement
and Control (Cambridge University Press, Cambridge,
England, 2010).

[16] Here, we are interested in time delays in contrast to the non-
Markovianity from structured reservoirs [17–19].

[17] Á. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys.
77, 094001 (2014).

[18] H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini,
arXiv:1505.01385.

[19] W. T. Strunz, L. Diósi, and N. Gisin, Phys. Rev. Lett. 82,
1801 (1999).

[20] C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and M.M.
Wolf, Phys. Rev. Lett. 95, 110503 (2005).

[21] C. Schön, K. Hammerer, M. M. Wolf, J. I. Cirac, and E.
Solano, Phys. Rev. A 75, 032311 (2007).

[22] T. J. Osborne, J. Eisert, and F. Verstraete, Phys. Rev. Lett.
105, 260401 (2010).

[23] F. Verstraete and J. I. Cirac, Phys. Rev. Lett. 104, 190405
(2010).

[24] J. Haegeman, J. I. Cirac, T. J. Osborne, H. Verschelde, and F.
Verstraete, Phys. Rev. Lett. 105, 251601 (2010).

[25] M. Fannes, B. Nachtergaele, and R. Werner, Commun.
Math. Phys. 144, 443 (1992).

[26] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[27] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
[28] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[29] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.

Mech. (2004) P04005.
[30] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[31] B. Peropadre, D. Zueco, D. Porras, and J. J. García-Ripoll,

Phys. Rev. Lett. 111, 243602 (2013).
[32] P. Milonni and P. Knight, Phys. Rev. A 10, 1096 (1974).
[33] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.116.093601 for details.
[34] C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed.

(Springer, Berlin Heidelberg, 2004).
[35] H. J. Carmichael, Phys. Rev. Lett. 70, 2273 (1993).
[36] C. W. Gardiner, Phys. Rev. Lett. 70, 2269 (1993).
[37] D. E. Chang, L. Jiang, A. V. Gorshkov, and H. J. Kimble,

New J. Phys. 14, 063003 (2012).
[38] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[39] M. C. Banuls, R. Orús, J. I. Latorre, A. Pérez, and P.

Ruiz-Femenía, Phys. Rev. A 73, 022344 (2006).
[40] J. Schachenmayer, I. Lesanovsky, A. Micheli, and A. J.

Daley, New J. Phys. 12, 103044 (2010).
[41] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and

F. Verstraete, arXiv:1408.5056.
[42] F. Le Kien, S. Dutta Gupta, K. P. Nayak, and K. Hakuta,

Phys. Rev. A 72, 063815 (2005).

PRL 116, 093601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

093601-5

http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nphys3150
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1103/RevModPhys.82.1209
http://dx.doi.org/10.1103/RevModPhys.82.1209
http://dx.doi.org/10.1038/nature13188
http://dx.doi.org/10.1038/ncomms6713
http://dx.doi.org/10.1038/nnano.2015.159
http://dx.doi.org/10.1038/nnano.2015.159
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/10.1038/ncomms4808
http://dx.doi.org/10.1103/PhysRevApplied.1.054005
http://dx.doi.org/10.1103/PhysRevApplied.1.054005
http://arXiv.org/abs/1602.00926
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://arXiv.org/abs/1505.01385
http://dx.doi.org/10.1103/PhysRevLett.82.1801
http://dx.doi.org/10.1103/PhysRevLett.82.1801
http://dx.doi.org/10.1103/PhysRevLett.95.110503
http://dx.doi.org/10.1103/PhysRevA.75.032311
http://dx.doi.org/10.1103/PhysRevLett.105.260401
http://dx.doi.org/10.1103/PhysRevLett.105.260401
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://dx.doi.org/10.1103/PhysRevLett.105.251601
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.111.243602
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.093601
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.093601
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.093601
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.093601
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.093601
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.093601
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.093601
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1088/1367-2630/14/6/063003
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevA.73.022344
http://dx.doi.org/10.1088/1367-2630/12/10/103044
http://arXiv.org/abs/1408.5056
http://dx.doi.org/10.1103/PhysRevA.72.063815


[43] P. Bushev, D. Rotter, A. Wilson, F. Dubin, C. Becher, J.
Eschner, R. Blatt, V. Steixner, P. Rabl, and P. Zoller, Phys.
Rev. Lett. 96, 043003 (2006).

[44] A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L.
Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, Phys.
Rev. Lett. 106, 020501 (2011).

[45] U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002).
[46] V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L.

Knight, Phys. Rev. A 60, 582 (1999).
[47] H. Giessen, J. D. Berger, G. Mohs, P. Meystre, and S. F.

Yelin, Phys. Rev. A 53, 2816 (1996).
[48] X.-P. Feng and K. Ujihara, Phys. Rev. A 41, 2668 (1990).
[49] R. J. Cook and P.W. Milonni, Phys. Rev. A 35, 5081 (1987).
[50] S. Rist, J. Eschner, M. Hennrich, and G. Morigi, Phys. Rev.

A 78, 013808 (2008).
[51] A.W. Glaetzle, K. Hammerer, A. J. Daley, R. Blatt,

and P. Zoller, Opt. Commun. 283, 758 (2010).
[52] H. Zheng and H. U. Baranger, Phys. Rev. Lett. 110, 113601

(2013).
[53] Yao-Lung L. Fang and H. U. Baranger, Phys. Rev. A 91,

053845 (2015).
[54] S. Zeeb, C. Noh, A. S. Parkins, and H. J. Carmichael, Phys.

Rev. A 91, 023829 (2015).

[55] M. Laakso and M. Pletyukhov, Phys. Rev. Lett. 113, 183601
(2014).

[56] A. L. Grimsmo, Phys. Rev. Lett. 115, 060402 (2015).
[57] For tA > τ, the entanglement is per construction S(ρAðtÞ) ¼

S(ρcircuitðt − tA þ τÞ). Thus, SðρcircuitÞ sets the maximum
entanglement generated in the MPS.

[58] We note that the entanglement does not depend on the time
step Δt.

[59] K. Stannigel, P. Rabl, and P. Zoller, New J. Phys. 14, 063014
(2012).

[60] H. Pichler, T. Ramos, A. J. Daley, and P. Zoller, Phys. Rev.
A 91, 042116 (2015).

[61] P. Horak, A. Xuereb, and T. Freegarde, J. Comput. Theor.
Nanosci. 7, 1747 (2010).

[62] J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, Nature
(London) 413, 495 (2001).

[63] M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler,
C. Becher, R. Blatt, and U. Dorner, Phys. Rev. Lett. 91,
213602 (2003).

[64] A. Beige, J. Pachos, and H. Walther, Phys. Rev. A 66,
063801 (2002).

[65] B. Mollow, Phys. Rev. 188, 1969 (1969).
[66] G. Tabak and H. Mabuchi, arXiv:1510.08942.

PRL 116, 093601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

093601-6

http://dx.doi.org/10.1103/PhysRevLett.96.043003
http://dx.doi.org/10.1103/PhysRevLett.96.043003
http://dx.doi.org/10.1103/PhysRevLett.106.020501
http://dx.doi.org/10.1103/PhysRevLett.106.020501
http://dx.doi.org/10.1103/PhysRevA.66.023816
http://dx.doi.org/10.1103/PhysRevA.60.582
http://dx.doi.org/10.1103/PhysRevA.53.2816
http://dx.doi.org/10.1103/PhysRevA.41.2668
http://dx.doi.org/10.1103/PhysRevA.35.5081
http://dx.doi.org/10.1103/PhysRevA.78.013808
http://dx.doi.org/10.1103/PhysRevA.78.013808
http://dx.doi.org/10.1016/j.optcom.2009.10.063
http://dx.doi.org/10.1103/PhysRevLett.110.113601
http://dx.doi.org/10.1103/PhysRevLett.110.113601
http://dx.doi.org/10.1103/PhysRevA.91.053845
http://dx.doi.org/10.1103/PhysRevA.91.053845
http://dx.doi.org/10.1103/PhysRevA.91.023829
http://dx.doi.org/10.1103/PhysRevA.91.023829
http://dx.doi.org/10.1103/PhysRevLett.113.183601
http://dx.doi.org/10.1103/PhysRevLett.113.183601
http://dx.doi.org/10.1103/PhysRevLett.115.060402
http://dx.doi.org/10.1088/1367-2630/14/6/063014
http://dx.doi.org/10.1088/1367-2630/14/6/063014
http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1166/jctn.2010.1539
http://dx.doi.org/10.1166/jctn.2010.1539
http://dx.doi.org/10.1038/35097017
http://dx.doi.org/10.1038/35097017
http://dx.doi.org/10.1103/PhysRevLett.91.213602
http://dx.doi.org/10.1103/PhysRevLett.91.213602
http://dx.doi.org/10.1103/PhysRevA.66.063801
http://dx.doi.org/10.1103/PhysRevA.66.063801
http://dx.doi.org/10.1103/PhysRev.188.1969
http://arXiv.org/abs/1510.08942

