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We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an
extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian
currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When
considering the special case of a stationary black hole, the zero mode charges correspond to the angular
momentum and the entropy at the horizon.
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Introduction.—Infinite-dimensional symmetries play a
central role in the holographic description of black holes.
The prototypical example is the microscopic derivation of
the entropy of asymptotically AdS3 black holes [1] in terms
of the Virasoro algebra at infinity [2]. Virasoro and affine
Kac-Moody algebras also appear in the description of non-
AdS black holes in three dimensions [3–7] and, in higher
dimensions, they govern the physics in the near horizon of
rapidly rotating Kerr black holes [8].
Recently, Hawking, Perry, and Strominger claimed that

nonextremal stationary black holes also exhibit infinite-
dimensional symmetries in the near horizon region, known
as supertranslations [9], and they suggested that this
observation could contribute to solving the information
paradox for black holes [10]. The symmetry observed in
Ref. [9] is similar to the one that arises in asymptotically
flat spacetimes at null infinity [11–13], usually referred
to as Bondi-Metzner-Sachs (BMS symmetry). The corre-
sponding algebra is an infinite-dimensional extension of
the translation part of the Poincaré group.
In the last years, BMS algebra has been reconsidered in

relation to flat space holography [14–23]; that is, the
attempt to extend the AdS=CFT holographic correspon-
dence to asymptotically flat spacetimes. In AdS=CFT, a
crucial ingredient is the asymptotic isometry group. From
the Anti-de Sitter (AdS) bulk point of view it is seen as the
set of symmetries that preserve the form of the geometry
close to the boundary region, where the dual conformal
field theory (CFT) is located, while from the point of view
of the CFT it corresponds to the local conformal group.
In flat space holography, the conformal symmetry at the
boundary is replaced by the BMS symmetry at the null
infinity region. Furthermore, in addition to BMS super-
translations, the symmetries at null infinity include super-
rotations and central extensions [16–20,24]; see also
Ref. [25]. In the presence of black holes, besides the null

infinity region, there exists a second codimension 1 null
hypersurface near which the geometry is flat: the black hole
event horizon. Therefore, a natural question is whether the
features associated with holography, such as the enhanced
BMS symmetry, also appear in the near horizon geometry
of black holes. In this Letter, we will show that for an
adequate choice of boundary conditions, the nearby region
to the horizon of a stationary black hole exhibits a
generalization of supertranslations, including a semidirect
sum with superrotations, represented by Virasoro algebra.
In this sense, both supertranslations and superrotations
arise close to the horizon. However, this particular exten-
sion differs from the extended BMS symmetryat null
infinity [17,18].
The Letter is organized as follows: In the section “Three-

dimensional analysis,” as entrée, we consider the three-
dimensional case. This allows us to identify the appropriate
boundary conditions at the horizon and construct a family of
exact solutions satisfying them. This family includes, as a
particular case, the Bañados-Teitelboim-Zanelli (BTZ) black
holes [26].We compute the algebra obeyed by the asymptotic
Killing vectors and show that they expand supertranslations
in a semidirect sum with superrotations. The charges asso-
ciated with such asymptotic symmetries are shown to expand
the samealgebra and by evaluating themon theBTZ solution,
we verify that they correspond to the angular momentum and
the entropy of the black hole. We follow the same strategy in
the section “Four-dimensional analysis,” where we address
the four-dimensional case.Wedemonstrate that the symmetry
group generated by these charges corresponds to two copies
of Virasoro algebra and two sets of supertranslations. The
zero mode conserved quantities of a Kerr black hole coincide
with the entropy and the angular momentum.
Asymptotic symmetries at the horizon.—We are inter-

ested in studying the symmetries preserved by stationary
nonextremal black hole metrics close to an event horizon,
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first in three dimensions and then we move to the four-
dimensional case.
Three-dimensional analysis: The near horizon geometry

of three-dimensional black holes can be expressed using
Gaussian null coordinates

ds2 ¼ fdv2 þ 2kdvdρþ 2hdvdϕþ R2dϕ2; ð1Þ
where v ∈ R represents the retarded time, ρ ≥ 0 is the radial
distance to the horizon, and ϕ is the angular coordinate of
period 2π. Functions f, k, h, andR are demanded to obey the
following fall-off conditions close to ρ ¼ 0:

f ¼ −2κρþOðρ2Þ;
k ¼ 1þOðρ2Þ;
h ¼ θðϕÞρþOðρ2Þ;

R2 ¼ γðϕÞ2 þ λðv;ϕÞρþOðρ2Þ; ð2Þ
where Oðρ2Þ stands for functions of v and ϕ that vanish at
short ρ equally or faster than ρ2, consistent with the near
horizon approximation. Themetric components gρρ and gρϕ,
which do not appear in Eq. (1), are supposed to be Oðρ2Þ.
One can verify that this asymptotic behavior is preserved by
the asymptotic diffeomorphisms we will consider, see
Eq. (4) below. In particular, no order OðρÞ is generated in
the component gρϕ. Functions θ, λ, and γ are arbitrary, the
latter describing the shape of the horizon. Boundary
conditions [Eq. (2)], apart from gathering the physically
relevant solutions, yield finite and integrable charges. Other
boundary conditions exist, which yield an additional super-
translation current; however, the latter lead to nonintegrable
charges. See also the interesting Refs. [27,28] for different
criteria for selecting boundary conditions at the horizon. As
we will see, our boundary conditions [Eq. (2)] break
Poincaré symmetry.
The constant κ corresponds to the black hole surface

gravity. Our boundary conditions assume that κ is a fixed
constant without variation, i.e., they describe the spectrum
of black holes at fixed Hawking temperature T ¼ κ=ð2πÞ. In
the case of the nonextremal BTZ black hole, this is given by

κ ¼ r2þ − r2−
l2rþ

; ð3Þ

where rþ and r− are the outer and inner horizons.
The asymptotic Killing vectors preserving the above

asymptotic boundary conditions are

χv ¼ TðϕÞ þOðρ3Þ;

χρ ¼ θ

2γ2
T 0ðϕÞρ2 þOðρ3Þ;

χϕ ¼ YðϕÞ − 1

γ2
T 0ðϕÞρþ λ

2γ4
T 0ðϕÞρ2 þOðρ3Þ; ð4Þ

where TðϕÞ and YðϕÞ are arbitrary functions and the prime
stands for the derivative with respect to ϕ. Under such

transformation, the arbitrary functions γðϕÞ and θðϕÞ
transform as

δχθ ¼ ðθYÞ0 − 2κT 0; δχγ ¼ ðγYÞ0: ð5Þ
The asymptotic Killing vectors depend on fields defined
on the metric. Accordingly, the algebra spanned by Lie
brackets does not close. However, by introducing a
modified version of Lie brackets [18]

½χ1; χ2� ¼ Lχ1χ2 − δχ1χ2 þ δχ2χ1; ð6Þ
one finds that the algebra of the asymptotic Killing vectors
is given by

½χðT1; Y1Þ; χðT2; Y2Þ� ¼ χðT12; Y12Þ; ð7Þ
where

T12 ¼ Y1T 0
2 − Y2T 0

1;

Y12 ¼ Y1Y 0
2 − Y2Y 0

1: ð8Þ
By defining Fourier modes, Tn ¼ χðeinϕ; 0Þ and
Yn ¼ χð0; einϕÞ, we find

i½Ym; Yn� ¼ ðm − nÞYmþn;

i½Ym; Tn� ¼ −nTmþn;

i½Tm; Tn� ¼ 0: ð9Þ
This is a semidirect sum of theWitt algebra generated by Yn
with an Abelian current Tn. The set of generators Y−1, Y0,
Y1, and T0 form a slð2;RÞ ⊕ R subalgebra.
The Tn generator is a supertranslation associated with the

symmetry,

v → vþ TðϕÞ; ð10Þ
already observed by Hawking [10] in four dimensions.
In the current analysis, we have extended this symmetry by
adding a vector field Yn which is responsible for generating
superrotations

ϕ → ϕþ YðϕÞ; ð11Þ
on the circle of the horizon geometry.
Transformations [Eq. (4)] have associated conserved

charges at the horizon ρ ¼ 0. When considering three-
dimensional Einstein gravity, these can be calculated in the
covariant approach [29], yielding the charges

QðχÞ ¼ 1

16πG

Z
2π

0

dϕ½2κTðϕÞγðϕÞ − YðϕÞθðϕÞγðϕÞ�:

ð12Þ
Their Poisson bracket algebra can be computed by noticing
that, canonically, these charges generate the transforma-
tions [Eq. (5)], i.e., fQðχ1Þ; Qðχ2Þg ¼ δχ2Qðχ1Þ. In Fourier
modes, T n ¼ QðT ¼ einϕ; Y ¼ 0Þ and Yn ¼ QðT ¼ 0;
Y ¼ einϕÞ, the algebra spanned by T n and Yn is isomorphic
to Eq. (9), with no central extensions.
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It is worthwhile noticing that by defining the generator

Pn ¼
X
k∈Z

T kT n−k ð13Þ

the algebra spanned by Pn and Yn is bms3 [16]

i½Ym;Yn� ¼ ðm − nÞYmþn;

i½Ym;Pn� ¼ ðm − nÞPmþn;

i½Pm;Pn� ¼ 0: ð14Þ
Therefore, although our asymptotic symmetries do not
contain a Poincaré subgroup, the full BMS symmetry is
recovered by means of the above Sugawara construction
[30].
Exact solution: Three-dimensional Einstein gravity in the

presence of a negative cosmological term allows us to find an
exact solution satisfying the above asymptotic boundary
conditions, including the BTZ black hole as a particular
case. Its line element is Eq. (1), where the functions read

f ¼ −2κρþ ρ2
�
θðϕÞ2
4γðϕÞ2 −

1

l2

�
;

k ¼ 1;

h ¼ θðϕÞρþ ρ2
θðϕÞ
4γðϕÞ2 λðϕÞ;

R ¼ γðϕÞ þ ρ
λðϕÞ
2γðϕÞ ; ð15Þ

and where λ is defined by

κλðϕÞ ¼ θ0ðϕÞ − 1

2
θðϕÞ2 þ 2

l2
γðϕÞ2 − θðϕÞ γ

0ðϕÞ
γðϕÞ : ð16Þ

θðϕÞ and γðϕÞ are arbitrary functions, and l stands for the
AdS radius. The BTZ black hole is obtained by making the
choice θðϕÞ ¼ 2r−=l and γðϕÞ ¼ rþ, while choosing κ
as (3). In Ref. [31], a solution similar to Eq. (15) was
presented, although with a different boundary condition on
the function R2.
It is interesting to study the special case κ ¼ 0 and

θ ¼ 2γ=l. For these values, the metric acquires the form

ds2 ¼ 2dvdρþ 4

l
ργðϕÞdvdϕþ γðϕÞ2dϕ2; ð17Þ

which has been found recently in the context of near
horizon geometries of three-dimensional extremal black
holes [32]. Note that the remaining symmetry algebra is just
one copy of Virasoro.
When taking the flat limit l → ∞, solution Eq. (15) also

solves Einstein equations without a cosmological constant.
After choosing κ ¼ −J2=2r3H, its zero mode solution, i.e.,
θ ¼ J=rH and γ ¼ rH, corresponds to a flat cosmology
with horizon radius rH [33].
The charges associated with solution Eq. (15) are given

by Eq. (12). Evaluating for the case of the BTZ black hole,
they read

T n ¼
κrþ
4G

δn;0; Yn ¼ −
rþr−
4Gl

δn;0: ð18Þ

Hence, the charge associated with time translations T0 ¼∂v is the product of the black hole entropy S ¼ πrþ=ð2GÞ
and its temperature T ¼ κ=ð2πÞ. This means that the particu-
lar chargeT 0, whenvarying the configuration space by fixing
the temperature, corresponds to the entropy of the black hole.
On the other hand, the charge associated with rotations along
Y0 ¼ ∂ϕ coincides exactly with the angular momentum.
Four-dimensional analysis: It is possible to extend the

analysis of the first section to four dimensions. A suitable
generalization of Eq. (1) is given by

ds2 ¼ fdv2 þ 2kdvdρþ 2gvAdvdxA þ gABdxAdxB; ð19Þ
where coordinates xA parameterize the induced surface at the
horizon. The fall-off conditions on the fields as ρ → 0 are

f ¼ −2κρþOðρ2Þ;
k ¼ 1þOðρ2Þ;

gvA ¼ ρθA þOðρ2Þ;
gAB ¼ ΩγAB þ ρλAB þOðρ2Þ; ð20Þ

while components gρA and gρρ decay as Oðρ2Þ close to the
horizon. Here, θA andΩ are functions of the coordinates xA,
λAB ¼ λABðv; xAÞ and γAB is chosen to be the metric of the
two-sphere. It is convenient to use stereographic coordinates
xA ¼ ðζ; ζ̄Þ on γAB, in such a way that

γABdxAdxB ¼ 4

ð1þ ζζ̄Þ2 dζdζ̄: ð21Þ

The set of asymptotic conditions is preserved by the
following vector fields:

χv ¼ Tðζ; ζ̄Þ þOðρ3Þ;

χρ ¼ ρ2

2Ω
θA∂AT þOðρ3Þ;

χA ¼ YA −
ρ

Ω
∂AT þ ρ2

2Ω2
λAB∂BT þOðρ3Þ; ð22Þ

where we have used γAB to raise indices and YA is a
function of xA only, i.e., Yζ ¼ YðζÞ and Y ζ̄ ¼ Ȳðζ̄Þ. Under
these transformations, the fields transform as

δχθA ¼ YB∂BθA þ ∂AYBθB − 2κ∂AT;

δχΩ ¼ ∇BðYBΩÞ; ð23Þ
∇ standing for the covariant derivative on γAB.
Under modified Lie brackets [Eq. (6)], transformations

[Eq. (22)] satisfy

½χðT1; YA
1 Þ; χðT2; YA

2 Þ� ¼ χðT12; YA
12Þ; ð24Þ

where

PRL 116, 091101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

091101-3



T12 ¼ YA
1∂AT2 − YA

2∂AT1;

YA
12 ¼ YB

1 ∂BYA
2 − YB

2 ∂BYA
1 : ð25Þ

Notice that the transformations generated by YA, in
general, are not globally well defined on the two-sphere.
The only invertible transformations are those spanning
the global conformal group, which is isomorphic to the
proper, orthochronous Lorentz group. However, if we focus
only on the local properties, all functions are allowed. This
was first proposed in Refs. [17,18] in the context of
asymptotically flat spacetimes.
By expanding in Laurent modes

Tðn;mÞ ¼ χðζnζ̄m; 0; 0Þ;
Yn ¼ χð0;−ζnþ1; 0Þ;
Ȳn ¼ χð0; 0;−ζ̄nþ1Þ; ð26Þ

the nonvanishing commutation relations read

½Yn; Ym� ¼ ðn −mÞYnþm;

½Ȳn; Ȳm� ¼ ðn −mÞȲnþm;

½Yk; Tðn;mÞ� ¼ −nTðnþk;mÞ;

½Ȳk; Tðn;mÞ� ¼ −mTðn;mþkÞ: ð27Þ
The exact isometry algebra corresponds to slð2;CÞ ⊕ R
whose elements correspond to the globally well-defined
transformations on the sphere plus Tð0;0Þ.
Conserved charges at the horizon turn out to be given by

QðT; YAÞ ¼ 1

16πG

Z
dζdζ̄

ffiffiffi
γ

p
Ω½2κT − YAθA�: ð28Þ

They close under Poisson bracket

fQðT1; YA
1 Þ; QðT2; YA

2 Þg ¼ QðT12; YA
12Þ: ð29Þ

By defining T ðm;nÞ ¼ Qðζnζ̄m; 0; 0Þ, Yn ¼ Qð0;−ζnþ1; 0Þ
and Ȳn ¼ Qð0; 0;−ζ̄nþ1Þ, we find that these quantities
satisfy the same algebra [Eq. (27)].
We can perform the Sugawara construction as we did in

the previous section. Defining

Pðn;lÞ ¼
X
m∈Z

X
t∈Z

T ðm;tÞT ðn−m;l−tÞ ð30Þ

and using Eq. (27), one finds

½Pðn;lÞ;Ym� ¼ ðn −mÞPðnþm;lÞ;

½Pðn;lÞ; Ȳm� ¼ ðl −mÞPðn;lþmÞ: ð31Þ

Although this is reminiscent of bms4, notice that this is
not exactly the same algebra as that found in Refs. [17,18].
Finally, let us note that Kerr black hole fits in our

boundary conditions [Eq. (20)]. An explicit construction of
this solution in terms of Gaussian normal coordinates can
be found in Ref. [34]. One can verify that

T ð0;0Þ ¼
κ

2π

A
4G

; Y0 ¼
iaM
2

; Ȳ0 ¼ −
iaM
2

; ð32Þ

where A is the area of the horizon, while M and a are the
usual parameters of the Kerr solution. That is, the zero
mode of the supertranslation is the product of the black hole
entropy with its temperature. Since our boundary condi-
tions are defined by fixing κ, we can associate this charge
with Wald entropy. On the other hand, the charge
Qð0; ∂ϕÞ ¼ −iðY0 − Ȳ0Þ ¼ aM is the angular momentum.
In the casewherem and n are different from zero,Yn, Ȳn,

and T ðm;nÞ with m ≠ n vanish. In contrast, charges T ðm;mÞ
with m ≠ 0 diverge. This phenomenon was first noticed in
Ref. [19] and has been explained in Ref. [20]. Let us explain
the origin of this divergence for the case of Schwarzschild
black hole. In this case, the supertranslation charge reads

T ðm;nÞ ¼
κr2þ
4G

δm;nIðmÞ; ð33Þ
where IðmÞ ¼ R

π
0 dθ sinðθÞcot2mðθ=2Þ is divergent for

m ≠ 0, with the divergence comes from the poles of the
sphere. If instead of Laurent modes, the supertranslation
Tðζ; ζ̄Þ is expanded in spherical harmonics, the charges can
be seen to vanish.
Discussion.—We have shown that the near horizon

geometry of nonextremal black holes exhibits an infinite
dimensional extension of supertranslation algebra, which in
particular contains superrotations. This phenomenon is
similar to what happens in the asymptotically flat space-
times at null infinity, although the algebra obtained differs
from the standard extended BMS. We have explicitly
worked out the cases of three-dimensional and four-
dimensional stationary black holes, for which the zero
modes of the charges associated with the infinite-dimen-
sional symmetries were shown to exactly reproduce the
entropy and the angular momentum of the solutions.
In the three-dimensional case, we have presented a

family of explicit solutions that obey the proposed boun-
dary conditions at the horizon and, therefore, realize the
infinite-dimensional symmetry generated by the semidirect
sum of Virasoro algebra and supertranslations. Although
this family of solutions represent locally AdS3 spacetimes,
they do not satisfy the standard Brown-Henneaux asymp-
totic conditions at ρ → ∞, as we are imposing boundary
conditions at the horizon ρ → 0. In Ref. [35], a set of
asymptotically AdS3 boundary conditions were found
whose associated charges yield a centrally extended version
of the algebra in Eq. (9). It would be interesting to study the
relation between such boundary conditions and Eq. (2); in
particular, to clarify the precise connection between the
family of solutions [Eq. (15)] and those presented in
Ref. [35]. The latter also includes the BTZ black hole as
a particular example; however, in contrast to Eq. (2), which
fixes the black hole surface gravity κ, the boundary
conditions considered in Ref. [35] are defined by fixing
the value of Δ ¼ Mlþ J.
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Another question is whether it is possible to modify our
boundary conditions in such a way of getting nonvanishing
central extensions. In this regard, it is worthwhile mention-
ing that the boundary conditions we have considered allow
for exponentially decaying modes e−κvXðϕÞ which yield an
extra infinite-dimensional symmetry also associated with
an extension of supertranslations. On the other hand, an
important point to address is the study of the extremal limit,
for which the boundary conditions at the horizon need to be
reconsidered since the leading term in gvv vanishes. Finally,
it would be worthwhile investigating whether this infinite
dimension symmetry can have applications to memory
effects in black hole physics.
To conclude, let us mention that the idea of investigating

the symmetries of the horizon has been considered for a
long time by different authors; see for instance Ref. [36].
Infinite-dimensional symmetries were discussed in a sim-
ilar context is Ref. [37–39]. It would be interesting to study
the connection between those works and ours.
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