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We propose an experimentally accessible scheme to determine the lower bounds on the quantum Fisher
information (QFI), which ascertains multipartite entanglement or usefulness for quantum metrology. The
scheme is based on comparing the measurement statistics of a state before and after a small unitary rotation.
We argue that, in general, the limited resolution of collective observables prevents the detection of large
QFI. This can be overcome by performing an additional operation prior to the measurement. We illustrate
the power of this protocol for present-day spin-squeezing experiments, where the same operation used for
the preparation of the initial spin-squeezed state improves also the measurement precision and hence the
lower bound on the QFI by 2 orders of magnitude. We also establish a connection to the Leggett-Garg
inequalities. We show how to simulate a variant of the inequalities with our protocol and demonstrate that
large QFI is necessary for their violation with coarse-grained detectors.
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With the enhanced control in modern quantum experi-
ments, it is now possible to coherently manipulate large
numbers of microscopic objects like photons and atoms with
unprecedented accuracy.However, these advances go hand in
hand with new challenges. On the one hand, the discrimi-
nation of large quantum systems requires increased resolu-
tion, while detectors are generally imperfect and their
resolution is limited. On the other hand, the number of
parameters increases exponentially in the number of particles
or modes, which makes a complete tomographic characteri-
zation of the system unfeasible. It is therefore of uttermost
importance to identify a few key properties of the system and
design simple measurement setups to determine them.
One such key property is the quantum Fisher information

(QFI), which is essentially a measure of how fast a given
state changes under a given evolution. The QFI is not only
an indicator of how useful a quantum state is for quantum
metrology [1,2] (e.g., to determine an unknown parameter
such as a frequency or a magnetic field [3]), but it also
provides a lower bound on multipartite entanglement [3].
Furthermore, the QFI was proposed as a measure for the
macroscopicity of quantum systems [4,5] and it plays a role
in other situations [6,7].
Here, we propose a simple and experimentally feasible

scheme to determine the lower bounds on the QFI. The
scheme is based on the comparison of the measurement
statistics of the generated state before and after a short but
finite unitary evolution U ¼ expð−iHtÞ (e.g., a phase shift
or an external electromagnetic field). We argue why in
general large QFI cannot be witnessed with limited detector
resolution. We overcome this restriction by a supplemen-
tary operation prior to the measurement. As our main result,
we find that this additional operation is of the same
complexity as the preparation for relevant examples,

allowing one to use the same experimental toolbox. As
examples, we discuss squeezing in photonic and spin
systems. For spin ensembles, we demonstrate that addi-
tional spin-squeezing operations [8–10] allow one to
improve the bounds on the QFI by up to 2 orders of
magnitude for realistic parameter values.
Furthermore, we establish a connection to Leggett-Garg

inequalities [11] [more precisely the no signaling in time
(NSIT) variant [12,13] ]. As a consequence NSIT protocols
can be simulated with our proposal. Interestingly, we find
that large QFI is necessary for their violation when dealing
with coarse-grained detectors.
Lower bounds on QFI.—Even though the QFI is a

nontrivial function of a state and H, tight lower bounds
have been found [3,14–16]. On the one hand, there exist
bounds based on the Heisenberg uncertainty relation [3,14].
On the other hand, one can bound the QFI by measuring the
response of a state to an (infinitesimally short) application
of a unitary evolution U ¼ expð−iHtÞ [15,16]. The latter
also corresponds to the usage of the prepared state in a
metrology scenario, where H depends on some unknown
parameter that shall be determined. It is well known that
entangled states offer a (quadratic) improvement as com-
pared to classical states [3].
Here, we focus on the second approach and derive a

lower bound on the QFI for finite t. Given a unitarily
evolving state ρðtÞ ¼ expð−iHtÞρð0Þ expðiHtÞ, the QFI is
a function of ρð0Þ and the generator H, but is independent
of t [2]. With the fidelity Fðρ; σÞ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
of

two states ρ, σ and the Bures distance dBðρ; σÞ ¼ffiffiffi
2

p ½1 − Fðρ; σÞ�1=2, the QFI I is implicitly defined via

dB(ρðtÞ; ρðtþ dtÞ)2 ¼ 1

4
IρðHÞdt2: ð1Þ
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We refer to the literature for further properties and explicit
formulas of I [2,7]. From Eq. (1), it is possible to derive the
inequality

F(ρð0Þ; ρðtÞ) ≥ cos

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IρðHÞ

q
t

�
; ð2Þ

which is valid for jtj ≤ π=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
IρðHÞp

[15,17]. This implies
that large QFI is necessary for a rapid reduction of the
quantum fidelity between ρð0Þ and ρðtÞ. Consider now a
generalized measurement fΩmgm with discrete outcomes
m, Ωm ≥ 0, and

P
mΩm ¼ 1. Let us denote the probabil-

ities of measuring m by pm ¼ Tr½Ωmρð0Þ� and
qm ¼ Tr½ΩmρðtÞ�, respectively. It holds that the
Bhattacharyya coefficient BΩ ¼ P

m
ffiffiffiffiffiffiffiffiffiffiffiffi
pmqm

p ∈ ½0; 1�
upper bounds the fidelity, that is, BΩ ≥ F(ρð0Þ; ρðtÞ).
There always exists an optimal measurement such that
the equality holds. Inserting this into Eq. (2) and inverting
it, we find the general inequality

IρðHÞ ≥ 4

t2
arccos2 BΩ; ð3Þ

where for later we abbreviate B ¼ 4t−2 arccos2 BΩ. While
Eq. (3) is valid for all t, it can only be saturated if
jtj ≤ π=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IρðHÞp

. The benefit of this inequality for experi-
ments is obvious. For a given initial state ρð0Þ, one chooses
a small enough t and generates ρðtÞ. By measuring ρð0Þ and
ρðtÞ with fΩmgm, one calculates BΩ and directly gets a
lower bound on I .
The presented bound differs from other approaches [16],

where one has to scan t, fit the results, and use the
approximation of infinitely small time steps. Our bound
does not rely on such fittings and approximations, which
circumvents additional uncertainties coming from the
fitting procedure. It also allows one to cope with statistical
uncertainties. While B decreases with t in general, this is
not the case when a finite error bar δ on the estimated value
of BΩ is taken into account. Even in the perfect case, that is,
BΩ ¼ cosð ffiffiffiffi

I
p

t=2Þ, it is required that t > 2 arccosð1 − δÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffi
IρðHÞp

in order to find BΩ þ δ < 1 and hence to have a
meaningful bound.
Typical experimental situations.—Equation (3) is a

general bound on the QFI that is not restricted to any
particular preparation, time evolution, and measurement.
We now focus on common experimental setups, in par-
ticular photons and spin ensembles. There, one typically
has annihilation and creation operators. For photons, they
are denoted by a and a†, respectively, and follow the
Heisenberg algebra ½a†; a� ¼ 1. In spin systems, one has Sþ
and S−, which form together with Sz ¼ 1

2
½Sþ; S−� a SU(2)

algebra: ½Sz; S�� ¼ �S�. In the following, we call an
operator linear or nonlinear with respect to polynomials
of the creation and annihilation operators.

Let us consider a generic protocol for ensembles of N
spin-1=2 particles for detecting large QFI [see also Fig. 1(a)
(with W ¼ 1 for the moment)]. The experiment starts by
generating an initial state jCi, which is often a spin-
coherent state. Here, we choose it to be oriented in the x
direction, that is SxjCi ¼ N=2jCi with Sx ¼ 1

2
ðSþ þ S−Þ.

From this, one reaches the desired quantum state jϕ0i via a
nontrivial operation V, that is, jϕ0i ¼ VjCi. The simplest
and most used operations are quadratic, resulting in a two-
body interaction. An example is the one-axis twisting [8],
which is nowadays routinely generated in many labs [9,10].
It is defined as

Vμ ¼ e−iνSxe−iμ=2S2z : ð4Þ
The first operation is the nontrivial step in the sense that it
creates the nonclassical features of the state jSμi ¼ VμjCi.
For μ < OðN−1=2Þ, spin squeezing is generated, while jSμi
is called oversqueezed (or non-Gaussian) for larger μ
values. The second operation in Vμ locally rotates the state
and ν is fixed such that the variance of Sz is maximal, while
Sy ¼ ð1=2iÞðSþ − S−Þ has minimal variance (see Ref. [8]
for the explicit formulas).
For B, it is necessary to compare jϕ0i to jϕ1i ¼ Ujϕ0i.

The Hamiltonian in U is chosen to be H ¼ Sz. It has to be
linear if the QFI is to provide any implications about
entanglement. Note that jCi has ICðSzÞ ¼ N, which is
maximal for all separable states. Hence, it is desirable to
overcome this value. In the present system, the maximal

FIG. 1. (a) Schematic of the preparation, measurement, and
comparison of the two states used for the lower bound (3). The
unitary V generates the nonclassical properties when applied to a
classical state jCi. U is a linear rotation whose action on jϕ0i ¼
VjCi potentially reveals the presence of large QFI. W is of the
same complexity as V and helps to overcome limitations in the
measurement resolution. (b)–(e) Photonic squeezing (see exam-
ple 1 in the text). The shaded area corresponds to the phase space
distribution of the state. (b) Preparation of jCi ¼ j0i. The white
arrows indicate the action of the squeezing operation V with
parameter ξ. (c) The action of U: the squeezed state is optionally
displaced by α, later illustrated with dashed contours. (d) Dis-
tinguishing the squeezed vacuum from the displaced squeezed
vacuum requires a certain detection precision. A large coarse-
grainingΔ prevents this distinction. The white arrows indicate the
action of the squeezing operation W ¼ V†. (e) After the back
squeezing, it is possible to distinguish the states even with a
large Δ.
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value for all states is IðSzÞ ¼ N2 [reached by the
Greenberger-Horne-Zeilinger (GHZ) state j0i⊗Nþj1i⊗N].
One-axis twisted states exhibit I jSμiðSzÞ ¼ OðN4=3Þ in the

squeezed regime and up to I jSμiðSzÞ ≈ N2=2 in the over-
squeezed regime.
The measurement is often restricted to be linear. In our

case, these are collective observables that measure the total
spin in a certain direction in space. For the given H, it is
best to measure in the x − y plane, that is, Ωm ¼ jmihmj
with Sαjmi ¼ mjmi for Sα ¼ 1

2
ðeiαSþ þ e−iαS−Þ and

m ∈ f−N=2;…; N=2g. As can be easily seen with numer-
ous examples, quadratic operators for the state preparation
V and linear measurements Ωm are fully sufficient to
witness large QFI with Eq. (3).
Generic problem with measurement accuracy.—We now

turn to more realistic descriptions of the measurement
apparatus. As we will see, limited detector resolution in the
spectrum of the observable generically leads to a drop of B.
In some instances (such as the GHZ state), already the
loss of the distinguishability between even and odd
eigenstates results in trivial lower bounds on the QFI. To
study the effect of finite detection resolution, we use the
following model of the coarse-grained detectors. Instead of
Ωm ¼ jmihmj, we consider a continuous measurement

ΩαðxÞ ¼
1ffiffiffiffiffiffi
2π

p
Δ
e−ðx−SαÞ2=ð2Δ2Þ: ð5Þ

Given a test state jmi, hmjΩðxÞjmi is normally distributed
around m with standard deviation Δ. The perfect meas-
urement ΩðxÞ → δðx −mÞjmihmj is well approximated for
Δ → 0. In Fig. 2, we plot B=N for the one-axis twisted
states (blue dashed curve) for several hundreds of spins. We

observe how sensitive the bound is to a rather small
increase of Δ.
A heuristic argument suggests that a limited measure-

ment resolution generically leads to a limited benefit of
Eq. (3) for N ≫ 1. We switch to the Heisenberg picture and
consider the equivalent situation in which the state jϕ0i is
observed through two different measurement bases jmi and
j ~mi ¼ U†jmi. The question of how well one is able to
distinguish jϕ0i from jϕ1i is hence equivalent to how
different jmi and j ~mi are when projected to the subspace
spanned by jϕ0i. Suppose that one wants to show
Iϕ0

ðSzÞ ≥ OðNxÞ with 1 < x ≤ 2. For a tight bound, this
necessarily implies t ¼ cN−x=2 ≪ 1 (c is a constant). The
unitary U slightly shifts jmi towards the center of the
measurement spectrum, that is, M1 ¼ hUSxU†im≈
mð1 − c2N−x=2Þ. At the same time, the second moment
M2 ¼ hUS2xU†im increases because neighboring basis
states are populated. This is quantified by the standard
deviation D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −M2

1

p
. A short calculation shows that

D≲ cN1−x=2=ð2 ffiffiffi
2

p Þ for any m. In particular, the case
x ¼ 2 gives D ≤ c=ð2 ffiffiffi

2
p Þ. In other words, the difference

between jmi and j ~mi is limited to a small region within
the spectrum. Therefore, a measurement resolution
Δ≲D ¼ OðN1−x=2Þ is mandatory to resolve this differ-
ence. The larger the QFI and the shorter hence t, the larger
are the requirements on the measurement resolution (see
also Refs. [18,19]).
Modified scheme.—We are now in the position to present

the main result of this Letter. In order to counter the
negative effect of unavoidable finite detector resolution,
one can modify the measurement and increase its resolution
by applying an additional unitary operation after U (see
Fig. 1). This is not possible with linear operators. However,
similarly to the generation of jϕ0i, one can apply another
nonlinear operation W between U and the measurement.
This means that we compare the two states jψ0i ¼ WVj0i
and jψ1i ¼ WUVj0i. Astonishingly, it turns out thatW can
often be implemented using the same resources as the
preparation step, as demonstrated now for two relevant
examples.
Example 1: photonic squeezing.—We start with the

vacuum state jCi ¼ j0i and choose V to be the standard
squeezing operation V ¼ exp½− 1

2
ξða†2 − a2Þ� with ξ > 0.

The state jϕ0i is hence squeezed along the x axis. For the
quadrature X ¼ 1ffiffi

2
p ða† þ aÞ, its distribution is a Gaussian

with variance VðXÞ ¼ 1
2
e−2ξ. We choose H ¼ P ¼

− 1ffiffi
2

p iða† − aÞ; that is, the unitary displaces every state in

phase space by α ¼ t=
ffiffiffi
2

p
along the x axis. Then, the

Bhattacharyya coefficient is BΩ ¼ exp½− 1
2
α2=VðXÞ� by

measuring X. For small enough α the bound (3) witnesses
QFI, which is inversely proportional to the variance and
grows exponentially with the squeezing parameter.
However, coarse graining decreases the distinguishability.
With a similar modelΩXðxÞ as in Eq. (5) (replacing S byX),

10−1 100 101 102
100

101

102

FIG. 2. Lower bounds B=N ≤ I=N for one-axis twisted states
jSμi ¼ VμjCi obtained with coarse-grained collective observ-
ables for different Δ [see Eqs. (3)–(5)]. For each N ¼ 100, 600,
1000 (from bottom to top), the bounds are plotted for W ¼ 1
(blue dashed line) andW ¼ V† (green solid line) and compared to
I=N (black dotted line). The values of μ in are chosen such that
the variance in the y direction is minimal (see Ref. [8] for the
explicit expressions). The improvement of the bounds through a
nontrivial W is particularly significant for Δ ≈ 10. The times
chosen are t ¼ 10−2 for N ¼ 100 and t ¼ 10−3 for N ¼ 600
and N ¼ 1000. Note that the results are optimized over the
measurement axis in the x-y plane.
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the variance of X increases to VðXÞ ¼ 1
2
e−2ξ þ Δ2. This

bounds the verifiable QFI to B ≤ 1=Δ2 regardless of the
state. Applying a second squeezingW ¼ exp½1

2
ξ0ða†2 − a2Þ�

after the evolutionU allows one to overcome this limitation.
In the Heisenberg picture, one hasW†XW ¼ eξ

0
X and hence

the spectrum is effectively stretched. In other words, the
uncertainty from coarse graining is effectively suppressed as
Δ → Δe−ξ0 [see also Fig. 1(b) for ξ0 ¼ ξ].
Example 2: spin-squeezing.—For spins, analytic results

are more difficult to obtain. However, as long as μ is not too
large in Eq. (4) (i.e., the state is not oversqueezed)
approximate expressions for spin-squeezed states similar
to the photonic squeezing can be found. Here, we numeri-
cally illustrate the impact of the back-squeezing operation
W ¼ V† for B with the detector model (5) in Fig. 2. We
observe that the bound can be tight even for a realistic Δ
around 10 with an improvement of up to 2 orders of
magnitude compared to W ¼ 1. We observe very similar
results in the oversqueezed regime.
Although it seems that the choiceW ¼ V† often leads to

good results, it is not necessarily the case. On the other
hand, we observe that one easily finds instances W ≠ V†

that still help one to overcome problems with detector
resolution. This is particularly important in experiments
where the sign of the interaction cannot be changed (see,
e.g., Ref. [10]). In Fig. 3, we present a numerical study for
B, where we search for operations W composed of
exp½−ði=2Þμ0S2z �, μ0 > 0, plus local rotations for different
jSμi with μ0 generally different from μ. For small squeez-
ing, one can achieve even better results than for W ¼ V†.
Connection to the Leggett-Garg inequalities.—The com-

parison of the two states jψ0i ¼ WVj0i and jψ1i ¼
WUVj0i with coarse-grained collective measurements is
reminiscent of the recently proposed NSIT conditions [12].
These conditions are an alternative [13] to the Leggett-Garg
inequalities [11], which aim to test so-called macrorealistic

theories. The nondisturbance of (macroscopic) systems
through measurements is the core assumption of such
theories, which contrasts with quantum mechanics.
Therefore, the inequalities for correlations between sequen-
tial measurements derived from this assumption can be
violated by a quantum system.
The simplest way to formulate the NSIT conditions is to

witness the change in the measurement statistics of some
observable depending on whether or not another measure-
ment has been preformed previously. Moreover, one is
interested in measurements that have a meaningful “macro-
scopic” limit. For spins, collective measurements with a
finite measurement resolution introduced in Eq. (5) are
typical instances. Let us fix the first measurement to be
along the z axis, ΩzðxÞ, and the second to be along the y
axis,ΩyðxÞ. In between, we assume some time evolution V.
(For the moment, V is more general than in the first part of
the Letter.) The same unitary is applied to the system before
the first measurement. In summary, one is interested in
comparing the measurement statistics of the undisturbed
state pðxÞ ¼ Tr½ρ0V†ΩyðxÞV�, where ρ0 ¼ VjCihCjV†,
with an intermediately measured state averaged over all
measurement results z, qðxÞ ¼ Tr½ρavV†ΩyðxÞV�, where

ρav ¼
R
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
ΩzðzÞ

p
ρ0

ffiffiffiffiffiffiffiffiffiffiffiffi
ΩzðzÞ

p
. Like before, the difference

of pðxÞ and qðxÞ can be measured, for example, with the
Bhattacharyya coefficient BΩ.
To see the connection to the QFI, notice that using the

Fourier transform of
ffiffiffiffiffiffiffiffiffiffiffiffi
ΩzðzÞ

p
one can rewrite the averaged

state as ρav ¼
R
dk

ffiffiffiffiffiffiffiffi
2=π

p
Δe−2Δ2k2e−ikSzρ0eikSz . This com-

pares to the previous situation comparing jψ0i and jψ1i if
we take W ¼ V and k ¼ t and if jψ1i is averaged over a
Gaussian distribution.
In this context, it is interesting to note that it is not possible

to violate the Leggett-Garg inequalities with coarse-grained
measurements (with Δ ≫

ffiffiffiffi
N

p
) if V is generated by a linear

Hamiltonian [20]. The connection of the discussed NSIT
condition to the bound (3) for estimating theQFI from below
gives two interesting insights. First, we observe that a large
QFI I ≡ Iρ0ðSzÞ is necessary to violate the Leggett-Garg
inequalities with coarse-grained detectors. Because of the
concavity and positivity of the fidelity, Eq. (2) can be
rewritten for a mixed state ρav

Fðρ0; ρavÞ ≥
Z

π=
ffiffiffi
I

p

−π= ffiffiffi
I

p dk

ffiffiffi
2

p
Δffiffiffi
π

p e−2Δ2k2 cos
�
1

2

ffiffiffiffi
I

p
k
�

≥ e−ðI=32Δ2Þ − erfc

� ffiffiffi
2

p
πΔffiffiffiffi
I

p
�
: ð6Þ

Therefore, given a large measurement uncertainty, say
Δ ¼ ffiffiffiffi

N
p

, quantum states with a large QFI I ≫ N are
necessary to violate the NSIT conditions and hence the
Leggett-Garg inequalities. On the other hand, with the
results presented previously, we find that V generated by

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
100

101

102

µ

FIG. 3. Lower bounds B=N ≤ I=N optimized over μ0 and ν0 in
W ¼ exp½−ði=2Þμ0S2z � expð−iν0SxÞ for N ¼ 600, Δ ¼ 5,
t ¼ 10−3, and various μ parametrizing jSμi (blue solid line).
The values are compared to W ¼ V† (green dashed line), W ¼ 1
(red dash-dotted line), and the true QFI I=N (black dotted line).
We observe that for small μ the bound is tight and even surpasses
the results for W ¼ V†. In addition, a nontrivial W is clearly
advantageous in the oversqueezed regime, starting from μ ≳ 0.05.

PRL 116, 090801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

090801-4



a quadratic Hamiltonian is sufficient to overcome the
limitations of a coarse-grained detection device. Given that
these operators are nowadays routinely implemented in the
lab, strong violations of the Leggett-Garg inequalities in
mesoscopic system sizes seem to be within reach.
Summary and outlook.—In this Letter, we proposed a

simple protocol for the experimental verification of large
QFI even with coarse-grained measurements. With an
additional squeezing operation right before the measure-
ment, present-day spin-squeezing experiments could
increase lower bounds on the QFI by up to 2 orders of
magnitude. Notably, it is not necessary to impose W ¼ V†

to achieve very good results. This paves the way for a
reliable detection of large scale QFI and multipartite
entanglement using collective measurements only.
At the same time, it provides an accessible scheme for

quantum metrology, where the action of the unitary U is
determined by a (partially) unknown parameter. It is
expected that the proposed application of W also helps
to improve the sensitivity in these scenarios. It is an open
but appealing question whether a well chosen W helps to
reveal other nonclassical quantities in multipartite systems.
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Note added.—Recently, we became aware of Ref. [21],
which demonstrates how to restore the Heisenberg limit in
quantum metrology protocols with the help of W ¼ V† in
the presence of coarse-grained collective observables.
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