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A minimax estimator has the minimum possible error (“risk”) in the worst case. We construct the first
minimaxestimators for quantum state tomographywith relative entropy risk. Theminimax risk of nonadaptive
tomography scales asOð1= ffiffiffiffi

N
p Þ—in contrast to that of classical probability estimation, which isOð1=NÞ—

where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch:
future observations that determine risk may come from a different sample space than the past data that
determine the estimate. This makes minimax estimators very biased, and we propose a computationally
tractable alternative with similar behavior in the worst case, but superior accuracy on most states.
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Quantum information processing relies on physical
systems that store and process quantum information,
usually in the form of qubits. Testing and characterizing
qubit devices is the business of quantum tomography [1],
and quantum state tomography in particular is used to
estimate the quantum state (density matrix) ρ produced by
an initialization procedure. Tomography comprises two
steps: (1) data gathering, accomplished by measuring a
quorum of different observables on N samples of ρ and
(2) an estimator that maps the data to a final estimate ρ̂. The
goal, of course, is an accurate estimate—we want a ρ̂ close
to the true state ρ, minimizing some error metric dðρ∶ρ̂Þ.
We define an optimal estimator to be one which achieves

the highest accuracy in the worst case. One might expect
tomographers to choose an estimator that is optimal (or at
least near optimal). Surprisingly, this is not done. Although
several estimators are known and used (linear inversion [2],
maximum likelihood [3], Bayesian mean [4], hedged
maximum likelihood [5], L1 regularization [6], best linear
unbiased estimator [7]), none of them is known to have
optimal pointwise accuracy [8] for a finite N. Until now, it
has not even been possible to evaluate whether any of these
estimators is good enough, because the bounds on achiev-
able pointwise accuracy have not been known either.
We address this situation in the present Letter by

constructing minimax estimators [depicted in Fig. 1; see
the detailed explanation after Eq. (7)] with absolutely
optimal performance. These estimators are unwieldy, but
(i) their performance yields tight upper bounds on accuracy,
effectively delineating what “good enough” means, and
(ii) their construction provides quite a lot of insight into
the structure of the problem. Armed with these results, we
show that hedged maximum likelihood (HML) is remark-
ably close to optimal and outperforms minimax for most
states (though, of course, its worst-case risk is higher).
We also identify the value for the hedging parameter β that
appears in HML, which leads to the minimax solution
within that class.

Prerequisites.—Defining “accuracy” requires making
several choices. For example, an optimal estimator for
one error metric dðρ∶ρ̂Þ is generally not optimal for a
different metric d0ðρ∶ρ̂Þ. Here [14], we quantify inaccuracy
by the quantum relative entropy,

dðρ∶ρ̂Þ ¼ Tr½ρðlog ρ − log ρ̂Þ�: ð1Þ
Relative entropy [19] is a well-motivated measure of
predictive (and information-theoretic) inaccuracy [4]. It is
a uniquely well-motivated error metric [9]; critically, it is
Fisher adjusted (i.e., it agrees locally with the unique metric
of statistical distinguishability [20]). Non-Fisher-adjusted
metrics are ill motivated and yield arbitrary results. Analysis
of a different Fisher-adjusted metric (e.g., infidelity) would
produce results qualitatively similar to those we derive here.
An estimator’s pointwise risk is a function of the true

state ρ and is given by the average of dðρ∶ρ̂Þ over all
possible data sets D of finite size N:

d̄ðρÞ ¼
X

D

PrðDjρÞd(ρ∶ρ̂ðDÞ): ð2Þ

In the minimax paradigm, we quantify an estimator’s
accuracy by its worst-case risk, d̄max ¼ maxρ d̄ðρÞ. The
minimax risk of the estimation problem is the minimum
achievable risk (minimized over all possible estimators),
and a minimax estimator is one that achieves this bound.
In most inference problems, the sample space of possible

observations (data) is fixed by the problem. Not so in
quantum tomography. Quantum systems can be measured
in many different and incomparable ways. This is the single
most significant difference between quantum and classical
estimation. This freedom is often removed in quantum
problems by choosing the best or worst possible measure-
ment (e.g., as in the definition of quantum relative entropy as
the classical relative entropy of the most difficult-to-predict
measurement). This is usually not done in tomography,
because the measurements which have the lowest expected
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risk are far too difficult. In this Letter, we follow the majority
of experiments and analyze tomography based on Pauli
measurements on a single qubit. However, we also prove
analytic lower bounds on minimax risk that apply to any
nonadaptive measurement and any d-dimensional quantum
system. In some parts of our analysis, we use a rebit—a
quantum system with a two-dimensional real Hilbert space,
whose state space corresponds to the equatorial plane of the
Bloch sphere—as an easier-to-analyze proxy for a qubit.
Minimax risk.—The first main result of this Letter is a

lower bound on the asymptotic (N → ∞) minimax relative
entropy risk of Pauli tomography on qubits and rebits,

d̄max ≥
e−ð1=2Þ

4

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
ffiffiffiffi
N

p ; ð3Þ

whereD ¼ 2 for rebits andD ¼ 3 for qubits. ItsOð1= ffiffiffiffi
N

p Þ
scaling contrasts sharply with the minimax risk of estimat-
ing a classical bit, which is almost exactly 0.5=N [22,23].

We derive this bound below by mapping the minimax risk
of qubit and rebit state tomography to a classical noisy coin
model. In Fig. 2, we compare these bounds to numerical
calculations of the minimax risk, for small N’s, of qubits,
rebits, and noisy coins.
A d-dimensional quantum state is analogous in many

ways to a classical d-outcome probability distribution.
However, its minimax risk scales differently because of
a phenomenon instrinsic to quantum tomography (though
not uniquely quantum) that we call sampling mismatch: the
sample space for the observed events is neither unique nor
isomorphic to the underlying state space. For example, the
possible statistics for the three two-outcome Pauli mea-
surements on a qubit naturally define a cube, whereas the
possible quantum states form a sphere (the Bloch ball).
Sampling mismatch can be reproduced in a simple

classical model called the noisy coin [24]. It is a classical
system with a two-outcome sample space (i.e., a coin flip)
where each observation is erroneous, with the known

FIG. 2. Numerical minimax risk for qubits, rebits, and noisy
coins. Black curves show the risk of numerically constructed
minimax estimators for a qubit and a rebit, as a function of the
number of samples (N), up to the maximum that was numerically
feasible. Red curves illustrate the numerically computed risk of
noisy coin systems whose noise levels are chosen to match the
effective noise of the qubit and the rebit, respectively. Blue lines
show the lower bound given in Eq. (6).

FIG. 1. Estimators for Pauli measurements on a rebit, depicted
as distortions of the linear inversion grid [see the text after
Eq. (7)]. (a) Three standard estimators for M ¼ 8 measurements
of X and Y. Vertices of the red grid correspond to estimated states.
Linear inversion estimates extend outside the Bloch disk of
physical states. MLE’s estimates are non-negative; HML’s are
strictly positive. (b) Minimax estimators for M ¼ 8, 16, 32, 64
measurements of X and Y on a rebit. Ripples indicate local bias
toward support points of the least favorable prior [9].
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probability α. Sampling mismatch arises when we attempt
to assign probabilities to future noiseless observations
using data from noisy measurements. The noisy coin’s
minimax risk is Oð1= ffiffiffiffi

N
p Þ, because nearly pure states are

hard to estimate accurately from noisy statistics. The
corresponding minimax estimators are strongly biased
toward nearly pure states (see Ref. [24] for details). We
are going to use a variant of the noisy coin model to bound
the risk of tomography.
We define “tomography” thusly: N samples (copies) of a

single-qubit state ρ will be prepared; each sample will be
measured independently (not jointly together with other
samples) in a predefined fashion (not adaptively). The kth
sample is measured in an arbitrary basis, and this meas-
urement can be described by a positive operator-valued
measure (POVM) Mk ¼ fΠk; I − Πkg, whose outcomes
have probabilities fq; 1 − qg, with q ¼ TrΠkρ. Based on
the N measurement results, we report a state ρ̂ and seek to
minimize the relative entropy cost.
Now, suppose that before analyzing the data (but after

choosing the measurements) we are told the eigenbasis of
ρ. This helps us (only ρ’s spectrum must be estimated), so
the risk of spectrum estimation is a strict lower bound on
the risk of full tomography [25].
We define fj0i; j1ig to be the eigenstates of ρ and write

ρ ¼ pj0ih0j þ ð1 − pÞj1ih1j: ð4Þ
Now, we need only estimate p ∈ ½0; 1�. This parameter
manifold is identical to that of a coin. Furthermore, the
quantum relative entropy between two diagonal density
matrices is identical to the classical relative entropy
between the corresponding distributions. So, since ρ’s
eigenbasis is known, estimating ρ is identical to estimating
the bias of a coin. However, unless the eigenbases of ρ and
the Πk happen to coincide, the measurement data obtained
from the N samples of ρ are not noiseless. Even if p ¼ 0
(i.e., ρ is pure), the data remain somewhat random.
The probability of observing Πk is not p, but

q ¼ ph0jΠkj0i þ ð1 − pÞh1jΠkj1i
¼ pð1 − 2αkÞ þ αk;

where the effective noise in sample k is

αk ¼ h1jΠkj1i: ð5Þ
We can model this situation perfectly by a noisy coin (as in
Ref. [24]) where each observation fails with a different
error probability. The error probability for the kth sample is
αk. In Ref. [9], we bound this estimation problem’s
minimax risk by

d̄max ≥
e−ð1=2Þ

2
ffiffiffi
β̄

p
1
ffiffiffiffi
N

p ; ð6Þ

where β̄ is the average resolution provided by the N noisy
samples:

β̄ ¼ 1

N

XN

k¼1

βk ¼
1

N

XN

k¼1

ð1 − 2αkÞ2
αkð1 − αkÞ

: ð7Þ

For any fixed measurement strategy—e.g., the standard
one where N=3 samples are measured in the X, Y, Z
bases—the maximum risk occurs when we choose the
eigenbasis of ρ to maximize β̄ in Eq. (7). This least
favorable basis is the one that lies as far as possible from
all measured bases. For a rebit, it lies halfway between the
X and Y bases, and αk ¼ 1

2
ð1 − 1=

ffiffiffi
2

p Þ. For a qubit, it is the
geometric mean of the X, Y, and Z bases, and
αk ¼ 1

2
ð1 − 1=

ffiffiffi
3

p Þ. Inserting these values for αk yields
the final bound given in Eq. (3).
This argument applies (qualitatively) to tomography on

any finite-dimensional system with any discrete POVM. As
long as no samples are measured in a basis that diago-
nalizes ρ, the minimax risk scales as Oð1= ffiffiffiffi

N
p Þ (although

the prefactor will vary). However, if any nonvanishing
fraction of the N samples is measured in a basis that
diagonalizes ρ, then Eq. (6) no longer applies. Thus,
continuous POVMs such as the unitarily invariant Haar-
uniform rank-1 POVM (also known as the uniform POVM)
require a slightly different argument. In Ref. [9], we prove
that, even in this case, the minimax risk is lower bounded
by O(ðN logNÞ−1=2).
Estimators.—To confirm the bound given byEq. (3) and to

explore the minimax risk at smallN, we use numerics to find
minimax estimators. An estimator is a map from the set of all
possible data sets into the set of densitymatrices.The possible
outcomes of the measurement(s) performed are represented
by a set of positive operators fEkg, and the data themselves
by a set of rawcountsD ¼ fnkg. For qubit Pauli tomography,
the data comprise M ¼ N=3 samples of each of the σx, σy,
and σz measurements; for rebits, they comprise M ¼ N=2
samples of each of the σx and σy measurements [26].
We used numerical optimization (over the set of possible

estimators) to find minimax estimators. The algorithms are
described in Ref. [9]. In Fig. 1, we depict the resulting
estimators and compare them to three canonical estimators:
1) Linear inversion (ρ̂LI): The first tomographic estimator, it
is obtained by equating each probability Prðkjρ̂LIÞ ¼
TrEkρ̂LI to its observed frequency nk=M. 2) Maximum
likelihood (ρ̂ML): MLE assigns the density matrix that
maximizes the probability of the observed data (the like-
lihood), LðρÞ ¼ PrðDjρÞ ¼ Q

k½TrðEkρÞnk �. 3) Hedged
maximum likelihood (ρ̂HML;β): The HML estimator max-
imizes the product of LðρÞ and a hedging function
hðρÞ ¼ detðρÞβ. This function is strictly convex and van-
ishes for rank-deficient states, so the HML estimate is
always full rank. To simplify visualization, we depict rebit
estimators, which are qualitatively similar to qubit estima-
tors and easier to depict. A rebit estimator is a map from
data sets to Bloch vectors, as ρ̂∶ f0;…;Mg2 → R2. We use
the linear inversion estimator as a reference. As a linear
map from the two-dimensional space of data sets
(f0…Mg2) and the two-dimensional space of rebit states
(the unit disk in R2), the linear inversion estimator is
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represented by a uniform grid on the Bloch square [see
Fig. 1(a)]. Every other estimator is represented as a
distortion of this grid. The vertices of the grid are estimates
ρ̂, and the position of such a vertex within the grid indicates
what data set it came from.
Minimax estimators for N ¼ 16, 32, 64, and 128 (total)

Pauli measurements on a rebit are shown in Fig. 1(b). The
most striking feature of these estimators is a pronounced
ripple phenomenon. This is not a numerical artifact.
Instead, it represents a consistent bias toward certain
discrete points within the state space (support points of
the least favorable prior—see Fig. 1 in Ref. [9]), which can
be identified in Fig. 1 as regions where the grid lines cluster
together. The minimax estimator demonstrates this bias
because these points are, in a particular sense, the most
difficult to estimate accurately.
Improving on minimax.—The minimax criterion is an

elegant concept, but a dangerous one. In its single-minded
quest to improve the maximum risk, it has no concern for
the pointwise risk at states that are easier to estimate. In
such regions, it may incur extreme bias and inaccuracy, for
the sole purpose of achieving a tiny reduction in the
maximum risk. For quantum tomography, this effect
becomes extreme. While Oð1=NÞ risk can be achieved
on all full-rank states, the risk is unavoidably Oð1= ffiffiffiffi

N
p Þ

near the boundary. Our numerical experiments confirm that
the minimax estimator’s pointwise risk is Oð1= ffiffiffiffi

N
p Þ every-

where, whereas other estimators easily achieve Oð1=NÞ
risk in the interior of the Bloch sphere [see Fig. 3(b)]. If ρ
really were selected adversarially, then minimax would be a
wise strategy. But in realistic cases, we would prefer an
estimator that achieved Oð1=NÞ scaling where possible,
even at the cost of slightly worse worst-case behavior.
A good estimator should achieve Oð1=NÞ risk in the

interior, while coming as close as possible to minimax
performance near the boundary. The maximum likelihood
estimator (MLE) is disqualified because its pointwise
expected risk is uniformly infinite [it has a nonzero
probability of returning a rank-deficient estimate for every
ρ, so d̄ðρÞ ¼ ∞]. However, HML does not display this
behavior. Introduced in Ref. [5] as a full-rank alternative to
MLE, HML generalizes classical add-β estimators. Like
them, it never assigns zero probabilities, and it has an
adjustable parameter β that governs how much it avoids
zero eigenvalues. Classical add-β estimators are very nearly
minimax (for β ≈ 1=2), which suggests that HML estima-
tors might have similar near-optimality properties.
All HML estimators have good behavior [Oð1=NÞ

pointwise risk] in the interior, so we choose β to be the
one which is minimax among HML estimators. As illus-
trated in Fig. 3(b), a HML estimator’s pointwise risk has
local maxima at the boundary (pure states) and/or at a
slightly depolarized state (with purity ∼1 − 1=

ffiffiffiffi
N

p
). To

minimize its maximum, we choose β to equalize the risk at
these two local maxima. The asymptotically minimax β for
the noisy coin model was shown in Ref. [24] to be

βoptimal ≈ 0.0389, and our numerics confirm that β ≈ 0.04
is minimax to within the available numerical precision for
rebit tomography as well [see Fig. 3(b); qubit results for
smaller N’s are not shown, but they confirm that β ≈ 0.04
has nearly minimax performance].
For this value of β, HML compares favorably with

minimax estimators. Its worst-case risk is very close to
the minimax risk [see Fig. 3(a)], and it dramatically
outperforms minimax in the interior of the state space [see
Fig. 3(b)]. So, while hedging estimators do not offer strictly
optimal performance by the global minimax criterion, they
are (i) easy to specify and calculate, (ii) close to minimax, and
(iii) more accurate than minimax estimators for almost all
states ρ. We do not know why the minimax β is so different
for noiseless coins (≈0.5) and for qubits, rebits, or noisy

FIG. 3. Maximum and pointwise risk of minimax and HML
estimators. (a) The maximum risk, for qubit tomography, of the
minimax estimator and three different HML estimators
(β ¼ 0.01, 0.04, 0.10) for N ≤ 192 samples, distributed equally
among the three Pauli bases. (b) The pointwise risk, along the
axis oriented at 45° to both X and Y, of the same estimators for
N ¼ 128 samples for a rebit [this minimax estimator is depicted
in Fig. 1(b)]. The two local maxima of d̄ðρÞ are at r ¼ 1 and
r ≈ 1 − 1=

ffiffiffiffi
N

p
. Choosing β ≈ 0.04 balances these risks and is

therefore minimax among HML estimators. This HML estimator
comes very close to matching the worst-case performance of the
minimax estimator and outperforms it dramatically in the interior
of the state space.
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coins (≈0.04), but it suggests fundamental differences
between noiselessly sampled systems and those (like qubits
and noisy coins) where sampling mismatch is important.
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