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Quantum mechanics predicts a number of, at first sight, counterintuitive phenomena. It therefore remains
a question whether our intuition is the best way to find new experiments. Here, we report the development
of the computer algorithmMELVIN which is able to find new experimental implementations for the creation
and manipulation of complex quantum states. Indeed, the discovered experiments extensively use
unfamiliar and asymmetric techniques which are challenging to understand intuitively. The results range
from the first implementation of a high-dimensional Greenberger-Horne-Zeilinger state, to a vast variety of
experiments for asymmetrically entangled quantum states—a feature that can only exist when both the
number of involved parties and dimensions is larger than 2. Additionally, new types of high-dimensional
transformations are found that perform cyclic operations. MELVIN autonomously learns from solutions for
simpler systems, which significantly speeds up the discovery rate of more complex experiments. The ability
to automate the design of a quantum experiment can be applied to many quantum systems and allows the
physical realization of quantum states previously thought of only on paper.
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Quantum mechanics encompasses a wide range of
counterintuitive phenomena such as teleportation [1,2],
quantum interference [3], quantum erasure [4], and entan-
glement [5–10]. Despite our struggle to reconcile them with
our picture of reality, these phenomena serve as building
blocks for many exciting and useful quantum technologies
such as quantum cryptography [11,12], computation [13,14],
and metrology [15,16]. A significant challenge arises,
however, when we try to combine such phenomena in order
to perform a complex quantum task. Understanding the
outcome of even a simple combination of these quantum
building blocks can be daunting for the human intuition.
Therefore, it is natural to ask: Given a certain desired
property of a quantum system, what combination of quan-
tum building blocks will be successful in achieving it?
In order to answer this question, we develop a classical

computer algorithm called MELVIN, to which we teach how
these quantum phenomena work and, subsequently, assign it
a specific problem. The machine then takes on the task of
finding and optimizing arrangements of quantum building
blocks that result in a solution. This allows us to uncover
experimental methods to create an array of new types of
entangled states previously thought to exist only in theory. In
addition, it also allows us to address the question of how to
manipulate such high-dimensional quantum states, which is
key for their use in quantum information systems.
While searching for these experiments, MELVIN enlarges

its own toolbox by identifying useful groups of elements,
leading to a significant speed-up in subsequent discoveries.
The experiments found by our algorithm show a departure
from conventional experiments in quantum mechanics in

that they rely on highly unfamiliar, but perfectly conceiv-
able experimental techniques. This provides some insight
into the kind of out-of-the-box thinking that is required for
creating such complex quantum states.
Our method aims to create and manipulate general

complex quantum states for which arbitrary transformations
are not known. The algorithm creates experiments using
experimentally accessible optical components that can
readily be implemented in the laboratory [17,18]. In addi-
tion, our algorithm considers multiple degrees of freedom of
single quantum systems and can be extended to include
nonlinear components and states more complex than single
photons. This would allow us to investigate many other
interesting quantum phenomena such as NOON states [19],
induced coherence [20,21], quantum teleportation of more
complex systems [2], or quantum metrology [15,16]. A
complementary field is computer assisted or automated
quantum circuit synthesis (QCS) [22–26], where optimal
implementations for quantum algorithms are designed from
universal sets of known quantum gates. While very powerful
in its own right, the technique of QCS is used for linear qubit
networks and usually requires fault-tolerant quantum com-
puters for the implementation of its results.
The algorithm.—The main goal is to develop an algo-

rithm which finds experimental implementations for quan-
tum states or quantum transformations with interesting
properties, see Fig. 1. Specific possible input states and a
toolbox of experimentally known transformations utilizable
by MELVIN are defined initially. Using the elements from
the toolbox, the algorithm assembles new experiments by
arranging elements randomly. Then, from the initial state,

PRL 116, 090405 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 MARCH 2016

0031-9007=16=116(9)=090405(5) 090405-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.090405
http://dx.doi.org/10.1103/PhysRevLett.116.090405
http://dx.doi.org/10.1103/PhysRevLett.116.090405
http://dx.doi.org/10.1103/PhysRevLett.116.090405


the resulting quantum state and transformation is calculated,
and its properties are analyzed. Well-defined criteria that are
provided by the user decide whether the calculated quantum
state has the desired properties. If the quantum state’s
properties satisfy the criteria, the experimental configuration
is simplified and reported to the user. MELVIN can store the
configuration in order to use it as a basic building element in
subsequent trials. By extending the initial toolbox, it is
learning from experience, which leads to a significant speed-
up in discoveries of more complex solutions.
All quantum states are calculated using symbolic algebra.

Every experimental element is a symbolic modification of
the input state. As an example, a 50=50 symmetric non-
polarizing beam splitter (BS) for photons is described by

BS½ψ ; a; b� ¼ ψ⇐

(
a½l� → 1ffiffi

2
p ðb½l� þ ia½−l�Þ

b½l� → 1ffiffi
2

p ða½l� þ ib½−l�Þ ; ð1Þ

where ⇐ stands for a symbolic replacement followed by a
list of substitution rules. l stands for the orbital angular
momentum (OAM) quantum number of the photon, and a
and b denote the input paths of the beam splitter. For
simplicity, all other degrees of freedom (such as polarization
or frequency) are considered to be the same for all photons.
For example, for the two-photon state ψ ¼ a½3�b½−3� (a and
b represent the path of one photon, þ3 and −3 stand for the
OAM of the photon), the beam splitter in path a and b will

lead to photon bunching, BS½ψ ; a; b� → ða½−3�2 þ b½3�2Þ,
which is the well-known Hong-Ou-Mandel effect [3]. By
realizing the calculations with symbolic algebra, adding new
elements or even new degrees of freedom is very easy [27].
Furthermore, it allows easy human-readable intermediate
forms, important for the examination of solutions and the
novel techniques found by the algorithm.
Next, we demonstrate the working principles using two

concrete examples. The demonstrations work in the regime
of photonic quantum experiments, but the algorithm can
readily be adapted to (a combination of) other systems such
as cold atoms [28].
Example 1: High-dimensional multipartite entangle-

ment.—The Greenberger-Horne-Zeilinger (GHZ) state is
the most prominent example of nonclassical correlations
between more than two involved parties and has led to new
understanding of the fundamental properties of quantum
physics [8]. It has been shown recently that its generalization
to higher dimensions not only has curious properties [10],
but that it is a limiting case of a much richer class of
nonclassical correlations [9,29,30]. These new structures of
multipartite high-dimensional entanglement are character-
ized by the Schmidt-rank vector and give rise to new
phenomena that only exist if both the number of particles
and the number of dimensions are larger than two.
An example of a state with Schmidt-rank vector (4,2,2) is
the asymmetrically entangled state jψ4;2;2i ¼ 1

2
ðj0; 0; 0iþ

j1; 0; 1i þ j2; 1; 0i þ j3; 1; 1iÞ. Here, the first particle is
four-dimensionally entangled with the other two parties,
whereas particle two and three are both only two-
dimensionally entangled with the rest. This master-slave-
slave configuration is one of the yet unexplored features that
only exist in genuine high-dimensional multipartite entan-
glement and will be interesting to study in more detail in
future. In order to make future experimental investigations
possible, we aim to find high-dimensional multipartite
entangled states in photonic systems.
Here, the initial state is created by a double spontaneous

parametric down-conversion (SPDC) process. SPDC is a
widespread source for the experimental generation of photon
pairs. Multiple SPDC processes can be used to produce
multipartite entanglement, as it is well known for the case of
two-dimensional polarization entanglement [31,32].
However, instead of polarization, we use the OAM of
photons [33–36], which is a discrete high-dimensional
degree of freedom based on the spatial structure of the
photonic wave function.
The experiments are generated using a set of basic

elements consisting of beam splitters, mirrors, Dove prism,
holograms, and OAM-parity sorters [27,37]. The holo-
grams and the Dove prisms have discrete parameters
corresponding to the OAM and phase added to the beam,
respectively. These elements are randomly placed in one
out of six different paths (four of the paths are inputs of the
two photon pairs and two are empty to increase variability).

FIG. 1. Working principle of the algorithm. First, an experiment
is created using elements from a basic toolbox. Then, the
quantum state is calculated, and subsequently, its properties
are analyzed. Those properties are compared with a number of
criteria. If these criteria are not satisfied, the algorithm starts over
again. However, if the criteria are satisfied, the experiment is
simplified and reported, together with all relevant information for
the user. Useful solutions can be stored and used in future
experiments, which significantly increases the discovery rate of
more complex experiments. The orange boxes (toolbox and
criteria) are adapted when a different type of quantum property
is investigated, while the rest of the algorithm stays the same.
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One arm is used to trigger the tripartite state in the other
three arms, which leads to roughly 1015 possible configu-
rations. At the end, a postselection procedure consisting of
the coincidence detection of four photons in the first four
arms yields the final state.
We calculate the Schmidt-rank vector of the final state

and select nontrivial ones (i.e., where there are no separable
parties). Furthermore, for higher usefulness in experiments,
we demand that the final state is maximally entangled in its
orbital-angular-momentum. If the criteria hold, the experi-
ment is reported.
MELVIN runs for roughly 150 hours (on an Intel Core i7

notebook with 2,4 GHz and 24 GB RAM using Wolfram
Mathematica), and finds 51 experiments for states that are
entangled in genuinely different ways. Among them, we
find the first experimentally realizable scheme of a high-
dimensional GHZ state [10], a generalization of the well-
studied two-dimensional GHZ state [Fig. 2(a)]. Furthermore,
we find many experiments for different asymmetrically
entangled states (such as the jψ4;2;2i discussed above). In
addition, several experiments only differ by continuously
tunable components (e.g., different holograms or triggers),
making it possible to explore continuous transitions between
states of different classes of entanglement.
The resulting experiments contain interesting novel exper-

imental techniques previously unknown to the authors. For
example, in 50 out of 51 experiments, one of the four paths
that comes directly from the crystals has not been mixed

with any other arm [arm D in Fig. 2(a), and arm T in 2(b)].
The reason is that, for double SPDC events, it is possible that
the two photon pairs come from the same crystal. Leaving
one path unmixed leads to erasure of such double-
pair emission events in fourfold coincidence detection.
Interestingly, this immediately introduces asymmetry in
the final experimental configuration. A different novelty is
introduced when more than six-dimensional entanglement is
created beginning from two three-dimensional entangled
pairs. This is only possible when the OAM spectra in two
crystals are shifted with a hologram and combined in a
nontrivial way [a preliminary stage of the technique can be
seen in Fig. 2(b), where the spectrum in arm C is shifted in
order to reach a ten-dimensional output]. In other experi-
ments, the normalization of the state has to be adjusted in
order to get a maximally entangled output. As neutral-
density filters were not part of the toolbox, MELVIN, instead,
used beam splitters as a 50% filter [for example, Fig. 2(b)].
Now, we briefly explain the three-dimensional GHZ-state

experiment [Fig. 2(a), details in [27] ]: Two independent
SPDC events in two crystals (which produce three-
dimensional entangled pairs) allow for nine different states
in the four arms. The parity sorter effectively removes all
combinations with opposite OAM parity from two crystals
(such as j0; 0;−1;þ1i), which reduces the state to five
terms. Detection photon T in the trigger state jTi ¼ ðj0i þ
j1iÞ leads to a multipartite entangled state where photons C
andD reside in a three-dimensional space and photonB lives
in a two-dimensional space [17]. The dimensionality of
photon B is then increased from two to three in an intricate
combination of photons A and C. Photon A is shifted by
−2 OAM quanta and combined with photon C at a beam
splitter. These photons are then detected in the same mode in
one BS output, which effectively erases the “which-crystal”
information and entangles the remaining three photons into a
three-dimensional GHZ state.
Example 2: High-dimensional cyclic operations and

learning.—In the second example, we are interested in
high-dimensional cyclic rotations, which are special cases
of high-dimensional unitary transformations. A set of
states is transformed in such a way that the last element
of the set transforms to the first element (for example,
j1i → j2i → j3i → j1i is a three cycle). Such transforma-
tions are required in novel kinds of high-dimensional
quantum information protocols [38,39] as well as in the
creation of high-dimensional Bell states. Here, our input is
a set of high-dimensional states encoded in different
degrees of freedom (path, polarization, and OAM).
While the creation and verification of high-dimensional
entanglement in OAM is well known [35,36], the knowl-
edge of how to perform arbitrary transformations in this
degree of freedom is still lacking. Thus, finding such
transformations in OAM is very important, as it would
enable practical experiments with high-dimensional

FIG. 2. Experimental implementations of high-dimensional
multipartite entangled quantum states. (a) The experimental
implementation for a three-dimensional three-partite GHZ state.
If detector T (Trigger) observes a photon in the state
jTi ¼ ðj0i þ j1iÞ, then the rest of the quantum state is in a
GHZ state, which looks like jψi ¼ j0; 0; 0i þ j1; 1; 1i þ j2; 2; 2i
(up to local transformations). The parity sorter, as described in
[37], can sort even and odd OAM modes. The three-dimensional
GHZ state has a Schmidt-rank vector of (3,3,3) (all components
are symmetrically entangled with the rest of the state). (b) A more
complex experiment is required for higher-order Schmidt-rank
vectors. The (10,6,5) state is one example of asymmetrically
entangled quantum states. The experiments are just two examples
of 51 implementations found for creating a variety of different
entangled states.
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quantum states and find application in high-dimensional
quantum information protocols.
The experiments are generated using a set of basic

elements that consists of polarizing and nonpolarizing beam
splitters, Dove prisms, mirrors, holograms, and half-wave
plates. These elements are placed in one of three different
paths (one path is used as an input, and two empty paths are
added to increase variability). This leads to roughly 1022

different possible experimental configurations.
The criterion is based on the largest cycle of the

transformation: A number of input states [with different
polarization (horizontal and vertical), OAM (l ¼ −10 to
þ10) and paths] are calculated. Then, we search subsets of
modes that are transformed in a closed cycle, as described
above, and select the largest closed cycle. MELVIN was able
to find the first experimentally realizable OAM-only four-
cyclic transformation, OAM-polarization hybrid three-, six-
, and eight-cyclic rotations and up to 14-cyclic rotations
using OAM, polarization, and path (Fig. 3 and [27]).
Complex problems can be solved more efficiently by

reusing solutions to simpler problems [40,41]: Whenever
MELVIN finds a solution for a simpler system, it memo-
rizes the experimental configuration as a new part of its
initial toolbox [27]. The novel elements in the toolbox can
be used to construct the next experimental configuration.
To compare the effectiveness of learning, we analyze the
algorithm with and without the ability to increase its own
set of basic elements. We ran the algorithm for 250 hours,
and only three and four instances of four-cyclic and six-
cyclic rotations were found, respectively. Not a single
instance of a three-cyclic or an eight-cyclic rotation was
found within 250 hours. However, using the ability to
learn new elements, we ran the algorithm 10 times
(starting with the initial toolbox, i.e., without keeping
the learned elements), and discovered that the three- and
six-cyclic rotations were found, on average, within 90
minutes (they were always found within three hours), and
the four- and eight-cyclic rotations were found, on
average, within three to five hours (in each of the ten
trials, they were found within eight hours). Thus, the
ability to learn new elements improves the search by more

than 1 order of magnitude, suggesting a mechanism for
designing experiments with a higher complexity (Fig. 4).
Conclusion and outlook.—We have shown how a com-

puter can find new quantum experiments. The large number
of discoveries reveals a way to investigate new families of
complex entangled quantum systems in the laboratory.
Several of these experiments are being built at the moment
in our labs [17,18]. In contrast to human designers of
experiments, MELVIN does not follow intuitive reasoning
about the physical system and, therefore, leads to the
utilization of many unfamiliar and unconventional tech-
niques that are challenging to understand. The algorithm
can learn from experience (i.e., previous successful sol-
utions), which leads to a significant speed-up in discoveries
of more complex experiments.
MELVIN can be applied to many other questions about

the creation and manipulation of quantum systems, such
as the search for more general high-dimensional trans-
formations with different degrees of freedom and for
different physical systems such as ultracold atoms [28]
or for efficient generation of other types of important
quantum systems such as NOON states [19]. In order to
improve the efficiency of finding solutions, powerful
techniques from artificial intelligence research can be
applied, such as evolutionary algorithms [42] (where the
experiment and the resulting quantum state play the role
of genotype and phenotype, respectively), reinforcement
learning techniques [41,43,44] (by implementing a
reward function depending on the closeness of the
quantum states properties to the desired properties), or

FIG. 4. Comparison of performance with and without the
ability to learn (log scale). White shows the average time required
in the case where the algorithm can learn useful transformations
(the algorithm was executed 10 times with the same initial
conditions). Black shows the time it requires without the ability to
learn. The experiments for three-cyclic and eight-cyclic trans-
formations were not found (within 250 hours) without learning,
while experiments for four-cyclic and six-cyclic rotation were
found three and four times in 250 hours, respectively. The errors
stand for 1 standard deviation, calculated from the times it took to
find the solution. Thus, autonomously extending the set of useful
transformations improves MELVIN’s performance, which is cru-
cial for scaling to more complex experiments.

FIG. 3. Realization of an eight-cyclic rotation using polariza-
tion and OAM (j − 1; Hi → j−1; Vi → j0; Vi → � � � j2; Hi →
j−1; Vi). In the experiment, a four-cyclic rotation for pure
OAM values is used. Within the four-cyclic rotation, the parity
sorter [37] mentioned in the main text is used twice.
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entropy-based [45] and big-data methods [46] (in order to
find more unexpected solutions).
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