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Diffusion nuclear magnetic resonance (NMR) is a powerful technique for studying porous media, but
yields ambiguous results when the sample comprises multiple regions with different pore sizes, shapes, and
orientations. Inspired by solid-state NMR techniques for correlating isotropic and anisotropic chemical
shifts, we propose a diffusion NMR method to resolve said ambiguity. Numerical data inversion relies on
sparse representation of the data in a basis of radial and axial diffusivities. Experiments are performed on a
composite sample with a cell suspension and a liquid crystal.
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Many porous materials of biological, geological, and
synthetic origin contain water in a range of microscopic
environments with different local pore geometries.
Information about the structure of the pore space can be
inferred from nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI) measurements of the
self-diffusion of the pore water [1,2]. The diffusion MRI
approach has been especially powerful for noninvasive
studies of the living human brain [3], allowing for quanti-
fication of axon diameter [4], mean orientation [5], and
orientation distribution [6]. Although useful, classical
diffusion MRI protocols relying on the Stejskal-Tanner
experiment [7] suffer from the fact that the effects of
distributions in pore size, anisotropy, and orientation are
intrinsically entangled. A partial solution to this problem is
provided by the double diffusion encoding (DDE) family of
NMR methods [8], which can give estimates of the pore
size and shape even in the presence of orientational disorder
[9–23]. Current in vivo versions of DDE permit detection of
anisotropy in areas of the human brain that are macro-
scopically isotropic [24] and the assignment of metabolite-
specific compartment shapes in animal models [25].
Despite these impressive feats, DDE yields ambiguous
results if the investigated volume element comprises several
types of water environments, the presence of which has
been inferred by fitting multicomponent biophysical mod-
els [26–29] to in vivo data acquired with the Stejskal-
Tanner method [30,31]. Selection of a single model from all
the ones that are able to reproduce the experimental data
remains a challenge [29]. The key to future progress in
diffusion NMR and MRI of heterogeneous anisotropic
materials lies in designing a method to unambiguously
resolve and quantify water compartments with respect to

their size and anisotropy, irrespective of the details of their
orientations. Once this goal has been achieved, the obtained
information could be used as input for existing methods to
estimate distributions of axon diameters [4] and orienta-
tions [32–34].
In solid-state NMR spectroscopy [35], the eigenvalues

and eigenvectors of the chemical shift tensors can be
determined through the dependence of the nuclear spin
Hamiltonian on the orientation of the tensors with respect
to the static magnetic field. We have recently pointed out
that the interaction between chemical shift tensors and the
magnetic field vector is analogous to the interaction
between diffusion tensors and the time integral of the
magnetic field gradient vector in diffusion NMR [36].
Assuming that the water molecules in a porous material can
be grouped into subensembles, each of which being
associated with its own specific microscopic diffusion
tensor, then the field of solid-state NMR can serve as a
rich source of inspiration when designing new diffusion
NMR and MRI methods [36–38]. Even though all the
details of restricted diffusion in a porous material cannot be
captured within a tensor model, the multitensor approxi-
mation is a useful point of departure for the analysis of data
from heterogeneous porous materials [6,13,30]. In the case
of restricted diffusion, the diffusion tensor should be
interpreted as an apparent one, being given by the pore
size and shape, the local diffusivity within the pore space,
as well as the timing parameters of the used pulse sequence
[39–44]. A more in-depth analysis of the validity of this
approximation is given in the Supplemental Material [45].

Here, we propose a diffusion NMR experiment to
resolve distinct water components using inspiration from
2D solid-state NMR techniques correlating isotropic and
anisotropic chemical shifts [50–52]. In these techniques,
the NMR signal is sampled in a 2D time-domain space
(t1, t2) where the spins evolve under both isotropic and
anisotropic chemical shifts in the first time dimension t1,
and exclusively under the isotropic chemical shift in the
second dimension t2. The time-domain signal Sðt1; t2Þ is
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related to the frequency-domain spectrum Iðω1;ω2Þ via a
2D Fourier transformation:

Sðt1; t2Þ ¼
Z∞

−∞

Z∞

−∞
Iðω1;ω2Þeiω1t1eiω2t2dω1dω2 : ð1Þ

When the signal is sampled on a rectangular grid in (t1, t2)
space, then Iðω1;ω2Þ can be directly estimated with the fast
Fourier transformation algorithm. The ω2 dimension of
Iðω1;ω2Þ provides resolution of sites with distinct isotropic
chemical shifts, while the ω1 dimension gives information
about the chemical shift anisotropy for each of the resolved
sites. In our diffusion NMR version, we resolve suben-
sembles of water using their distinct isotropic diffusivities,
and, for each of the subensembles, quantify their micro-
scopic diffusion anisotropy.
Consider a material consisting of multiple microscopic

domains where water diffusion can be approximated as
being Gaussian and described by a microscopic diffusion
tensor D. The diffusion NMR signal amplitude is given
by [1,2]

SðbÞ ¼ S0he−b∶Di ; ð2Þ
where S0 is the signal obtained when the diffusion-encoding
magnetic field gradients have zero amplitude, b and D are,
respectively, the diffusion-weighting and diffusion tensors,
which both are symmetric positive-definite second-order
tensors, h·i denotes a population-weighted average over the
domains, and b∶D symbolizes a generalized scalar product
defined as b∶D ¼ P

i

P
j bijDij. The size, shape, and

orientation of the b tensor are under direct experimental
control through their dependence on the applied magnetic
field gradients [38,53,54]. The diagonalized b tensor can be
decomposed into its linear bL, planar bP, and spherical bS
components according to

b ¼ bL

2
64
0 0 0

0 0 0

0 0 1

3
75 þ bP

2

2
64
0 0 0

0 1 0

0 0 1

3
75þ bS

3

2
64
1 0 0

0 1 0

0 0 1

3
75:

ð3Þ

In order to keep the analogy with Eq. (1), we consider
only the case bP ¼ 0. With this parametrization of the b
tensor, Eq. (2) can be expressed as

SðbL; bSÞ

¼ S0

Z∞

0

Z∞

0

PðDzz;DisoÞe−bLDzze−bSDisodDzzdDiso ; ð4Þ

where Diso ¼ traceðDÞ=3 is the isotropic diffusivity and
Dzz is the zz element of D in the principal axis system
(PAS) of the b tensor. The functionPðDzz;DisoÞ denotes the

joint probability density of water being in a microscopic
environment with the diffusivities Dzz and Diso.
Equation (4) closely resembles Eq. (1), the main difference
being the real rather than imaginary arguments of the
exponential functions. In the analogy between Eqs. (1)
and (4), PðDzz;DisoÞ assumes the role of Iðω1;ω2Þ.
The signal SðbL; bSÞ is the 2D Laplace transformation of
the distribution PðDzz;DisoÞ, which in principle can be
extracted by applying a 2D inverse Laplace transformation
(ILT) [55–57] to data acquired as a function of bL and bS.
An isotropic orientation distribution of axially symmet-

ric diffusion tensors, with radial and axial diffusivities D⊥
and D∥, respectively, gives rise to a 2D line shape

LðDzz;Diso; D⊥; D∥Þ
¼ δ½Diso − ð2D∥ þD⊥Þ=3�

×
Zπ=2

0

δ½Dzz − ðD∥cos2θ þD⊥sin2θÞ�sinθdθ ; ð5Þ

in the distribution PðDzz;DisoÞ. In Eq. (5), δ½·� is the Dirac
delta function and θ is the polar angle of the diffusion
tensor z axis in the b tensor PAS. The expression in Eq. (5)
corresponds to the 2D line shape for an axially symmetric
chemical shift tensor in the solid-state NMR experiments
for correlating isotropic and anisotropic chemical shifts
[50–52].
According to Eq. (5), each component with specific

values of D⊥ and D∥ gives rise to a ridge in the 2D
distribution PðDzz;DisoÞ. A collection of such ridges is
challenging to reproduce with the standard 2D ILT algo-
rithms due to inversion artifacts [12,58]. In order to
circumvent this problem, we introduce the distribution
PðD⊥; D∥Þ where each distinct component gives rise to
a 2D delta function. The (D⊥,D∥) basis thus offers a sparse
representation of the data. The distributions PðDzz;DisoÞ
and PðD⊥; D∥Þ are related via the integral transformation

PðDzz;DisoÞ

¼
Z∞

0

Z∞

0

LðDzz;Diso; D⊥; D∥ÞPðD⊥; D∥ÞdD⊥dD∥ : ð6Þ

Insertion of Eq. (6) into Eq. (4) yields

SðbL; bSÞ

¼ S0

Z∞

0

Z∞

0

KðbL; bS; D⊥; D∥ÞPðD⊥; D∥ÞdD⊥dD∥ ; ð7Þ

where
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KðbL; bS; D⊥; D∥Þ ¼
ffiffiffi
π

p
e−bLD⊥erfð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bLðD∥ −D⊥Þ
p Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bLðD∥ −D⊥Þ

p
× e−bS

D∥þ2D⊥
3 : ð8Þ

The distribution PðD⊥; D∥Þ can be estimated by inversion
of Eq. (7) using numerical approaches similar to the ones
used for the 2D ILT [55].
We have recently introduced the pulse sequence in

Fig. 1, which has the capability to sample a range of
shapes of the b tensor [59]. The signal is encoded for
diffusion in a sequence of three directions n1, n2, and n3,
defined by three azimuthal angles consecutively rotated by
2π=3 radians, and a constant polar angle ζ. The trace of the
b tensor, corresponding to the b value in conventional
diffusion NMR, is given by [59]

b ¼ 3ðγGδÞ2ðΔ − δ=3 − τ=2 − ε=2 − ε2=6δþ ε3=15δ2Þ ;
ð9Þ

where γ is the gyromagnetic ratio, G is the gradient
amplitude, and the timing variables Δ, δ, τ, and ε are
defined in Fig. 1. When ζ ¼ 0, the signal is encoded for
diffusion in the z direction of the gradient frame of
reference shown in Fig. 1 (bottom right). Diffusion in this
single direction contains contributions from both the
isotropic and anisotropic parts of the diffusion tensor,
and we will denote such diffusion encoding as
“directional.” Isotropic encoding is achieved by setting ζ
to the “magic-angle” acosð1=31=2Þ ≈ 54.74° [59]. This case
is analogous to the solid-state NMR technique magic-angle

hopping [60], wherein information about the isotropic
chemical shifts is obtained by rotating the sample in three
discrete steps.
Using the relations between the b-tensor elements and

the angle ζ given in Ref. [59], it can be shown that within
the range 0 ≤ ζ < 54.74°, the b-tensor components bL, bP,
and bS can be written as

bL ¼ bP2ðcos ζÞ ;
bP ¼ 0 ;

bS ¼ b½1 − P2ðcos ζÞ� ; ð10Þ

where P2ðxÞ ¼ ð3x2 − 1Þ=2 is the second Legendre poly-
nomial. According to Eqs. (9) and (10), the 2D (bL, bS)
space can be sampled through the variablesG and ζ that are
under direct experimental control. Figure 2(a) shows the
conceptually simplest way of sampling the (bL, bS) space: a
square grid with an equal number of points in both
dimensions. By inverting Eqs. (9) and (10), we can
calculate the corresponding 2D mesh in (G, ζ) space as
shown in Fig. 2(b).
The new diffusion NMRmethod is demonstrated using a

composite sample with three water components resembling
the ones that have been used to model water diffusion in
chemically fixed rat brain [61]. As illustrated in Fig. 3, the
sample is a 5 mmNMR tube, with a lyotropic liquid crystal,
placed inside a 10 mm tube filled with a yeast cell
suspension [37]. The liquid crystal was prepared as
described in Ref. [38] using the composition 45 wt %
water (Milli-Q quality), 40 wt % of the hydrocarbon
2,2,4-trimethylpentane (Sigma-Aldrich, Sweden), and
15 wt % of the detergent sodium 1,4-bis(2-ethylhexoxy)-
1,4-dioxobutane-2-sulfonate (trade name AOT from
Sigma-Aldrich, Sweden). According to the phase diagram
in Ref. [62], the liquid crystal is of the reverse 2D
hexagonal type, giving rise to pronounced diffusion
anisotropy of the water [38]. The diffusion properties of
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FIG. 1. NMR pulse sequence for correlating isotropic and
directional diffusion. The series of 90°x (thin vertical line) and
180°y (thick vertical lines) radiofrequency (rf) pulses gives rise to
a signal (decaying sinusoidal), the amplitude of which is encoded
for diffusion using three sets of ramped gradient pulses as
indicated with the numbered and colored braces. The dashed
box shows a magnification of the first bipolar gradient pulse. The
gradient amplitudeG and the time intervals δ,Δ, ε, and τ enter the
calculation of the trace of the b tensor in Eq. (9). The bottom right
panel illustrates the unit vectors (n1, n2, n3) of the three sets of
gradient pulses. The vectors form the angle ζ with the z axis and
are located with threefold symmetry on a right circular cone with
apex at the origin. (Adapted with permission from Ref. [59].
Copyright 2015 by Elsevier.)

FIG. 2. Data sampling strategy for 2D correlation of isotropic
and directional diffusion using the pulse sequence in Fig. 1. (a) 2D
space spanned by the linear bL and spherical bS components of the
diffusion-encoding tensor b as defined in Eq. (3). Isotropic (blue)
and directional (red) encoding correspond to the colored
perpendicular lines in the (bL, bS) space. (b) 2D mesh of gradient
amplitudes G and angles ζ calculated from the square grid in the
(bL, bS) space by inverting Eqs. (9) and (10).
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water in the liquid crystal resemble intra-axonal water in
tissue regions with low, but nonzero, orientational order.
The yeast cell suspension was prepared as reported in
Ref. [37]. Two water populations can be distinguished in
the cell suspension, an intracellular and an extracellular
one, both of them featuring isotropic diffusion but with a
few orders of magnitude difference in apparent diffusivity
[36,44,63]. The extracellular component resembles extra-
axonal water or cerebrospinal fluid, while the intracellular
component corresponds to the slow isotropic water that has
been inferred from advanced model fitting of conventional
diffusion MRI data [61].
Experiments were performed at 291.2 K on a Bruker

Avance-II 500 MHz spectrometer using a MIC-5 probe
fitted with a 10 mm rf insert. Data were acquired with the
timing variables δ ¼ 3.7 ms, Δ ¼ 59.2 ms, ε ¼ 0.1 ms,
τ ¼ 0.2 ms, τ1 ¼ 5.2 ms, τ2 ¼ 54.0 ms, τe ¼ 22.0 ms, and
recycle delay ¼ 2 s, gradient amplitudes from 0.004 to
0.630 T=m in 16 geometrically spaced increments, and
angles ζ selected to give a rectangular sampling of the
(bL, bS) space. The data were powder averaged over 29
orientations of the gradient frame [37], thereby enforcing
an isotropic orientation distribution as required for
Eqs. (5) and (8) to be valid. A two-step rf pulse and
receiver phase cycle and extensive use of spoiler gradients
was used to assure that all acquired signal originates from
the first 90° pulse [38]. The total experiment time was
8.5 h. The 1H signal was recorded with 10 kHz spectral
width and 1024 complex time-domain points. After Fourier

transformation, phase correction, and baseline correction,
the water resonance line was integrated and stored for
further analysis. All data processing was performed
with in-house code written in MATLAB (The Mathworks,
Natick, MA).
The experimental results are shown in Fig. 4. The traces

labeled “isotropic” and “directional” in Fig. 4(a) highlight
the fact that these two sets of 1D data form orthogonal lines
in the 2D (bL, bS) space. The distribution PðDzz;DisoÞ was
estimated by subjecting the acquired data to a numerical
2D ILT using the method of English et al. [55] augmented
with a bootstrapping procedure [64,65] to generate 104

realizations of PðDzz;DisoÞ. Averaging of all these realiza-
tions was used to reduce the influence of spurious features
[65], giving a smooth 2D spectrum PðDzz;DisoÞ as shown in
Fig. 4(b). In this representation, an isotropic component is
located on the diagonal (Dzz ¼ Diso), while an anisotropic
component gives rise to a ridge in parallel with the Dzz
axis since a unique value of Diso is correlated with a
whole range of values of Dzz that, according to Eq. (5),

(a) (b) (c) anisotropic

(d) fast+slow isotropic

10 mm

5 nm

5 µm

FIG. 3. Schematics of geometry and microstructure of a
composite yeast cell suspension and liquid crystal sample giving
three distinct water components. (a) Assembled sample with
coaxial glass tubes located in a 10 mm rf coil. (b) Cutaway view
revealing the geometries of the solutions in the inner and outer
tubes with outer diameters of 5 and 10 mm, respectively.
(c) Magnification of a section of a single microdomain in the
polydomain liquid crystal in the inner tube. (d) Micrometer-scale
structure of the yeast cell suspension in the 10 mm tube. The
spherical shells symbolize the cell membranes that separate the
intra- and extracellular water.

FIG. 4. 2D correlation of isotropic and directional water
diffusion for the three-component sample in Fig. 3. (a) Water
signal amplitude SðbL; bSÞ=S0 sampled on a geometrically
spaced rectangular grid in the 2D (bL, bS) space (circles,
experimental; lines, calculated from the sparse basis analysis).
The traces corresponding to purely isotropic and directional
encoding are highlighted with the colors blue and red, respec-
tively. (b) 2D directional and isotropic diffusion correlation
spectrum PðDzz;DisoÞ obtained by 2D inverse Laplace trans-
formation. (c) 2D correlation spectrum of radial and axial
diffusivities PðD⊥; D∥Þ estimated by numerical inversion of
Eq. (7). The result of a three-component fit of Eq. (7) is indicated
with green crosses and percentages for the relative weights of the
components. (d) 2D spectrum PðDzz;DisoÞ obtained from
PðD⊥; D∥Þ in panel (c) by transformation according to
Eq. (6). In (b)–(d), the contour lines are linearly spaced from
5% to 90% of the maximum value and the dashed lines indicate
the diagonals. The traces above and to the left of each contour
plot represent the 1D projections of the 2D distributions onto the
respective axis. Note that the three components are widely
separated in the sparse basis in panel (c).
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depend on the eigenvalues of the diffusion tensor as well as
its orientation with respect to the b tensor. While a slow
isotropic component, corresponding to the intracellular
water of the yeast suspension, is easily discerned at
Diso ¼ Dzz ≈ 10−11 m2 s−1, there is no clear separation
between the two remaining ones with Diso on the order
of 10−9 m2 s−1.
Improved resolution of the three components can be

obtained by numerical inversion of Eq. (7) using the same
procedure as for the 2D ILT above. The resulting distri-
bution PðD⊥; D∥Þ in Fig. 4(c) features three clearly
separated components: two isotropic ones at D∥ ¼
D⊥ ≈ 10−11 and 10−9 m2 s−1, corresponding to the intra-
and extracellular water, as well as an anisotropic compo-
nent with D∥ ≈ 10−9 m2 s−1 and D⊥ ≈ 10−11 m2 s−1
originating from the liquid crystal. The green crosses in
Fig. 4(c) show the values of D∥ and D⊥ determined by
fitting a three-component version of Eq. (7) to the data. As
described in the Supplemental Material [45], the measured
apparent diffusivities D∥ ¼ D⊥ ¼ 1.7 × 10−11 m2 s−1 for
the intracellular component are consistent with restricted
diffusion in a spherical cell with a radius between 2.7 and
3.0 μm, an intracellular water diffusivity of 0.56 ×
10−9 m2 s−1 [44], and the herein used pulse sequence
parameters. The cell radius is in reasonable agreement
with the literature data for yeast cells [44,66,67].
In order to keep the analogy with the corresponding

solid-state NMR experiments, numerical evaluation of
Eq. (6) can be used to convert PðD⊥; D∥Þ to the
(Dzz, Diso) basis as shown in Fig. 4(d). Comparison
between Figs. 4(b) and 4(d) verifies that the indirect route
via the sparse representation in the (D⊥, D∥) basis gives a
more clear separation of the liquid crystal and extracellular
components. In the latter case, the intra- and extracellular
components both lie on the diagonal, and the liquid
crystal component is a ridge perfectly aligned with the
Dzz axis, spanning both sides of the diagonal.
We have suggested and demonstrated a diffusion NMR

experiment that can resolve subensembles of water with
distinct coordinates in a sparse 2D basis of radial and axial
diffusivities. Our recent diffusion MRI methods for in vivo
mapping of microscopic diffusion anisotropy [68] already
sample two perpendicular 1D lines in the 2D acquisition
space of the new method, and can readily be adapted to
sample the full 2D space [54]. In line with the path of
development of our method for quantifying water diffu-
sional exchange in the human brain [12,57,69–71], we plan
to carefully select a sparse set of informative data points in
the herein densely sampled 2D acquisition space, thereby
permitting measurements within the time frame of clinical
MRI. By imposing physiologically reasonable constraints
on the values of the components, the sparsely sampled data
can then be converted to populations and local diffusivities
that are not only valuable by themselves, but could also

serve as input parameters for the current algorithms to
recover the orientation distributions of the anisotropic
components [34].
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