
Colossal Seebeck Coefficient of Hopping Electrons in ðTMTSFÞ2 PF6

Yo Machida,1 Xiao Lin,2 Woun Kang,3 Koichi Izawa,1 and Kamran Behnia2,*
1Department of Physics, Tokyo Institute of Technology, Meguro 152-8551, Japan

2LPEM (UPMC-CNRS) ESPCI, 75005 Paris, France
3Department of Physics, Ewha Womans University, Seoul 120-750, Korea

(Received 6 January 2016; published 25 February 2016)

We report on a study of the Seebeck coefficient and resistivity in the quasi-one-dimensional conductor
ðTMTSFÞ2 PF6 extended deep into the spin-density-wave state. The metal-insulator transition at TSDW ¼
12 K leads to a reduction in carrier concentration by 7 orders of magnitude. Below 1 K, charge transport
displays the behavior known as variable range hopping. Until now, the Seebeck response of electrons in this
regime has barely been explored and is even less understood. We find that, in this system, residual carriers,
hopping from one trap to another, generate a Seebeck coefficient as large as 400 kB=e. The results provide
the first solid evidence for a long-standing prediction according to which hopping electrons in the presence
of the Coulomb interaction can generate a sizable Seebeck coefficient in the zero-temperature limit.
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The Seebeck coefficient, a measure of entropy per
mobile particle [1–4], behaves differently in metals and
insulators. In a Fermi-Dirac distribution, entropy is con-
fined to an energy window centered at the Fermi energy
with a width of kBT. A fixed population of mobile electrons
share this shrinking entropy when a metal is cooled down.
Therefore, the diffusive Seebeck coefficient of a metal,
below the degeneracy temperature, has an upper limit of
ðπ2=3ÞðkB=eÞ ∼ 288 μV=K, and its linear decrease with
temperature reflects the quadratic temperature dependence
of the energy shift between the chemical potential and the
Fermi energy [3]. In an insulator, both entropy and mobile
carriers vanish at zero temperature and the fate of the
Seebeck coefficient depends on the relative rate of decrease
in these two vanishing quantities. Since there is a well-
defined energy gap, Δ, between the chemical potential and
the nearest occupied energy level, the Peltier coefficient
would be of the order of Δ and the kelvin relation implies
that the Seebeck coefficient is proportional to the inverse
of absolute temperature [2](see Fig. 1).
Any real insulator cooled down towards zero temper-

ature, however, would end up entering a regime in which
electronic transport is governed by carriers trapped in local
defects and jumping from one site to another, a regime
dubbed variable range hopping (VRH) [see Fig. 1(c)].
Would this impede the survival of a finite Seebeck
coefficient in the zero-temperature limit? In spite of several
theoretical proposals addressing this question [5–9], no
satisfactory response has been given to this question. There
is not theoretical consensus, as theorists have variously
predicted that in insulators cooled down to the lowest
achievable temperature, one is expected to see a vanishing
[5], a finite [7], or a diverging (but unmeasurable) [9]
Seebeck coefficient. On the experimental side, there is no
track of a result providing a definitive answer to this

question. A large Seebeck coefficient was found in early
experiments on semiconducting silicon and germanium
[10,11], but the data acquisition was interrupted at a
temperature too high to resolve the asymptomatic response
in the zero-temperature limit.
In this Letter, we present a study of electric resistivity

and the Seebeck coefficient in ðTMTSFÞ2 PF6, a quasi-one-
dimensional conductor known to go through a nesting-driven
spin-density-wave (SDW) instability at TSDW¼12K. As
the first pressure-induced organic superconductor [12], this
Bechgaard salt has been subject to numerous studies during
more than three decades (see Refs. [13,14] for recent
reviews). According to our findings, below 1 K, electric
resistivity displays a VRH temperature dependence and,
concomitantly, the Seebeck coefficient rapidly increases
with decreasing temperature, attaining a magnitude as large
as 37 mV=K at T ∼ 0.1 K. A quantitative description of
our thermoelectric data is missing. Nevertheless, this is the
first explicit experimental confirmation of the persistence
of a finite Seebeck coefficient in an insulating solid in
the zero-temperature limit. We argue that this arises as a
consequence of the huge number of configurations available
to a hopping electron. Our result is in qualitative agreement
with that subset of theoretical proposals [7–9] which does
not predict a vanishing fate for the Seebeck coefficient in a
zero-temperature insulator.
Figure 2(a) shows the temperature dependence of the

resistivity. As found in previous studies [15–18], the SDW
transition drastically affects resistivity. Cooling the sample
down to 0.2 K leads to a 7-order-of-magnitude enhance-
ment in resistivity. Between 10 and 1 K, it follows that an
activated behavior with a temperature dependence expre-
ssed as ρ ∝ expðΔ=kBTÞ and the extracted Δ of 20 K is
comparable with what was previously reported and what is
expected for a mean-field transition occurring at 12 K.
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Below 1 K, we resolve a clear downward deviation from the
activated behavior. Note that the millionfold increase in
resistivity indicates that the carrier number has dropped
to a level where there remains one mobile electron per 106

TMTSF. This puts an upper limit on the number of
surviving residual carriers after cooling down to this
temperature. This is an insulator, in the strict sense of
the term: a solid with divergent unsaturated resistivity
lacking mobile electrons at zero temperature.
One source of residual carriers at finite temperature is

crystal defects, potential wells holding trapped charge
carriers. Electric conductivity in this context is described
along the lines first drawn by Mott [19] and dubbed
variable range hopping [20,21]. In agreement with a
previous study [16], we find that resistivity below 1 K

can be described by the expression ρ ∝ exp½ðT=T0Þ−γ�.
However, our results cannot pin down the magnitude of γ,
which can be a number between 1=3 and 1=2, as seen in
Figs. 2(c) and 2(d).
The temperature dependence of the Seebeck coefficient

is illustrated in Fig. 3. As seen in the inset, the
SDW transition leads to a jump in the Seebeck coefficient,
also reported by previous studies [22–24]. (See the
Supplemental Material [25] for a discussion.) The
Seebeck anomaly is concomitant with a sharp jump in
resistivity and a lambda anomaly in specific heat [26,27],
with all three confined to a very narrow window near the
critical temperature. Below the SDW transition temper-
ature, the Seebeck coefficient follows an activated behavior
jSj ∝ Δ=kBT, with Δ ∼ 20–30 K, comparable with the one
extracted from resistivity. A large Seebeck coefficient with
a Seebeck coefficient roughly proportional to the inverse of
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FIG. 1. (a) In a metal, the average thermal energy of a carrier,
which sets the Peltier coefficient, Π, is quadratic in temperature.
With decreasing temperature, mobile entropy shrinks but carrier
number does not change. As a consequence of the kelvin relation
(Π ¼ ST), the Seebeck coefficient is T linear. (b) In an insulator,
the average thermal energy of a carrier is T independent, set by
the distance between the occupied level closest to the chemical
potential. Both the carrier number and entropy vanish at zero
temperature. If the carrier number decreases faster, the Seebeck
coefficient will increase with decreasing temperature. (c) Real
insulators will eventually enter the variable range hopping
regime, where Coulomb interaction opens a soft gap (ΔES) in
the vicinity of the chemical potential. What happens to the
thermoelectric response at temperatures below this gap?

FIG. 2. (a) Temperature dependence of resistivity along
the a axis in a logarithmic plot; resistivity increases by more
than 7 orders of magnitude. As seen in the inset, over a wide
temperature window (10 to 1 K), it follows an activated behavior.
(b),(c) Below 1 K, resistivity displays an exp½ðT=T0Þ−γ� behavior
characteristic of VRH. Semilogarithmical plots of ρ vs (b) T−1=3

and (c) T−1=2 both yield quasistraight lines at the low-temperature
end. (d) Crystal structure of the Bechgaard salt ðTMTSFÞ2 PF6.
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the temperature has been seen in several quasi-one-
dimensional organic conductors upon the entry of the
system in the SDW state [28,29].
The Seebeck coefficient displays a local peak around

T ∼ 2 K. Concomitantly, the Peltier coefficient (extracted
using the kelvin relation) peaks to 1 mV [see the lower inset
of Fig. 3(b)], which quantifies the average thermal energy
carried across the gap. This 2 K peak in thermopower may
be related to a number of anomalies seen in the 2–4 K
temperature range by magnetotransport [30] and NMR [31]
studies. A satisfactory explanation for these anomalies and
the significance of this temperature scale are still missing.
An incommensurate-to-commensurate SDW transition
[31,32] has been invoked to interpret the NMR data.
A more unexpected behavior was detected upon further

cooling. A spectacular enhancement in the Seebeck coef-
ficient, with S ∝ T−2.5, is detectable as soon as the system
enters the VRH regime below 1 K. This result, a Seebeck
coefficient attaining a magnitude as large as 37 mV=K,
almost 400 times kB=e, is the main new result of this Letter.

It is highlighted in the upper inset of Fig. 3(b) by presenting
a linear plot of the data. The enhancement below 1 K easily
dwarfs the anomaly seen at the SDW transition. The lower
inset of Fig. 3(b) presents the temperature dependence of
the Peltier coefficient. Its low-temperature magnitude
implies that hopping electrons carry an average energy
of 4 meV at 0.13 K. Let us examine the possible origins of
this colossal thermoelectric response.
Phonon drag, a thermally induced flow of phonons

pulling electrons along their way, can lead to a large
amplification of the Seebeck coefficient [2,4] in cryogenic
temperatures. It is not expected to play a major role in this
temperature range, as recently argued [9]. Here, the
electron-phonon coupling is weak and lattice thermal
conductivity rapidly decreasing, and a sudden emergence
of a large phonon drag contribution below 1 K is
implausible.
Can the result be an experimental artifact caused by the

large resistance of the sample? This is also unlikely. We
measured three different samples which yielded compa-
rable results. Moreover, as seen in the figure, there is a
satisfactory match between the low-temperature data
(obtained in Tokyo on one sample) and the high-temper-
ature data (acquired in Paris on another sample). Our
standard one-heater-two-thermometer setup, illustrated in
Fig. 4, has been used to measure the subkelvin thermo-
electric response in a variety of solids including heavy-
electron metals [33,34], superconducting thin films [35],
and semimetals [36]. In the case of heavy-fermion
YbRh2Si2, the results were in agreement with those
obtained by another group [37]. In the present case, the
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FIG. 4. (a) For measuring the Seebeck coefficient, a heat
current was injected into the sample by passing a current though
the heater and measuring both the temperature gradient and the
voltage difference created by this heat current. (b) For measuring
the electrical resistivity, a current was injected into the sample and
the voltage difference created by this charge current. In both
cases, the voltage was measured in the same way by the same
electrodes and the same instrument.

FIG. 3. (a) Temperature dependence of the Seebeck coefficient
along the a axis in the vicinity of the SDW transition. Below the
transition temperature, the Seebeck coefficient follows a T−1

dependence, as indicated by a solid line. (Inset) The anomaly at
the SDW transition. (b) Temperature dependence of the Seebeck
coefficient in a logarithmic plot. The magnitude of the Seebeck
coefficient attains 37 mV=K at 0.13 K. (Lower left inset) The
temperature dependence of the Peltier coefficient Π ¼ ST.
(Upper right inset) The data in a linear plot. Solid and empty
circles represent data obtained on two different samples with two
different setups.
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sample resistance becoming as large as 10 MΩ at the
lowest temperature remains 2 orders of magnitude lower
than the input impedance of the Keithley 2182A nano-
voltmeter. The same nanovoltmeter was used to measure
the voltage in our resistivity measurement with reliable
results. We cannot identify any experimental artifact lead-
ing to the large ratio of voltage to thermal gradient observed
here (see the Supplemental Material [25]).
The drastic enhancement in the Seebeck coefficient is

concomitant with the entry to the VRH transport regime
detected by resistivity. It is, therefore, natural to look for
an additional source of thermoelectric response associated
with this regime. Mott [19] argued that when carriers hop
from one site to the other with a probability proportional to
expð−W=kBT − 2R=ξÞ (W is the energy separation and R
the spatial distance between the two sites, while ξ is the
localization length of the hopping electron), the expression
for electric conductivity in a system with dimension d
becomes

σ ∝ exp½−ðT0=TÞ1=ðdþ1Þ�: ð1Þ
Efros and Shklovskii showed that a finite Coulomb

interaction leads to a significant depopulation of the
occupied sites in the immediate vicinity of the chemical
potential and the opening of a soft gap, ΔES [38]. The
resulting expression for electric conductivity is independent
of dimensionality:

σ ∝ exp½−ðT 0
0=TÞ1=2�: ð2Þ

The presence of this Coulomb gap is expected to become
visible when the temperature is low enough such that
kBT < ΔES. In practice, as our present data show [see
Figs. 2(c) and 2(d)], it is hard to distinguish between the
two kinds of stretched exponentials. Burns and Chaikin
argued that the fate of the thermopower in the zero-
temperature limit is drastically modified by the presence
of the Coulomb gap [7]. In the absence of the Coulomb gap,
thermopower should be vanishing:

SðTÞjVRH ∝ Tðd−1Þ=ðdþ1Þ: ð3Þ
In three dimensions (d ¼ 3), this expression is identical

to the one first found by Zvyagin [5] [SðTÞ ∝ ðTT0Þ1=2].
On the other hand, Burns and Chaikin argued that, in the
presence of the Coulomb gap, thermopower will remain
finite in the low-temperature limit:

SðTÞjESVRH ∝ S0: ð4Þ
Later and with detailed calculations, Lien and Toi

confirmed this conclusion [8]. However, this theoretical
prediction has never been confirmed by experiments. To
put it in a few words, can the Seebeck coefficient of a solid
remain finite in the zero-temperature limit, the third law of
thermodynamics notwithstanding? To the best of our

knowledge, this fundamental question is answered for
the first time by the observation reported here.
Many questions remain unanswered. Is this result

generic to all semiconductors cooled below their
Coulomb gap in the VRH regime? Available reports on
thermoelectric response in archetypal semiconductors
such as silicon [11,39] and germanium [10,40,41] resolve
a large Seebeck coefficient down to the lowest temper-
ature of measurement. However, the data stop above 5 K.
Only in metallic samples of silicon [42] or germanium
[41] (that is, with carrier density above the threshold of the
metal-insulator transition), a vanishing thermopower in
the low-temperature limit has been resolved. Therefore,
the thermoelectric response of band insulators in the
VRH limit remains an open question [25]. Here, the
robust insulating ground state owes its existence not to a
band gap, but to a many-body gap opened by a SDW
transition. Does this matter? This is another open ques-
tion. Because of the incommensurability of the SDWorder
in ðTMTSFÞ2 PF6, one expects the presence of collective
excitations known as phasons deep inside the ordered state
[32]. We note also that another unsolved enigma is
the electric-field dependence of nonlinear conductivity
below 1 K [18]. One may wonder about the relevance of
these other puzzling features of ðTMTSFÞ2 PF6 to the
observation reported here.
If a large Seebeck coefficient happens to be a generic

feature of an insulator cooled below the temperature
corresponding to its Coulomb gap, then a new research
avenue opens up. How do we quantify the Seebeck
coefficient of hopping electrons in each system? The
Heikes formula [43] is often used to describe the magnitude
of the thermoelectric response by hopping electrons. As
Mott noted long ago [19], this formula assumes a single
hopping probability for all sites, and therefore it cannot be
readily used in the VRH regime. The connection between
the energy landscape carved by defects in a real insulator
and the low-temperature thermoelectric response is an
unexplored field of research. The configurational entropy
of each hopping electron is the information which travels
with it. Therefore, there are potential links to the emerging
field of thermodynamics of information [44].
In summary, we measured the Seebeck coefficient

ðTMTSFÞ2 PF6 down to very low temperatures and found
that the entry to the VRH regime is concomitant with a very
large enhancement of the Seebeck coefficient, which attains
a magnitude as large as 37 mV=K, implying that a finite
Seebeck coefficient can persist in a solid in the zero-
temperature limit.
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