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Existing proximity effects stem from systems with a local order parameter, such as a local magnetic
moment or a local superconducting pairing amplitude. Here, we demonstrate that despite lacking a local
order parameter, topological phases also may give rise to a proximity effect of a distinctively inverted
nature. We focus on a general construction in which a topological phase is extensively coupled to a second
system, and we argue that, in many cases, the inverse topological order will be induced on the second
system. To support our arguments, we rigorously establish this “bulk topological proximity effect” for all
gapped free-fermion topological phases and representative integrable models of interacting topological
phases. We present a terrace construction which illustrates the phenomenological consequences of this
proximity effect. Finally, we discuss generalizations beyond our framework, including how intrinsic
topological order may also exhibit this effect.
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Topological phases of matter cannot be characterized by a
local order parameter, unlike conventional ordered phases
with, e.g., magnetic order. Instead, one discriminates them
from so-called trivial phases of matter by analyzing either
their global properties, such as topological invariants [1–5]
and entanglement fingerprints [6–20], or their boundaries,
which often exhibit robust gapless states. Despite such
subtleties in characterization, significant progress has been
made in understanding the different varieties and phenom-
enology of topological phases. One broad class of states
involves those with intrinsic topological order [21] which
possess excitations with fractional statistics, topological
ground state degeneracy, and long-range entanglement.
Additionally, even systems without intrinsic topological
order can support robust topological phases in the presence
of symmetry. In particular, two gapped phases which cannot
be smoothly connected without either closing the gap or
breaking a given symmetry constitute distinct symmetry
protected topological (SPT) phases [22–24]. Both classes of
topological matter—intrinsic and SPT—have been realized,
respectively, in fractional quantum Hall systems [25] and,
more recently, in a variety of topological insulators [2].
Given the maturity of material synthesis and engineering

processes, one can easily imagine fabricating topological
materials in proximity to other systems. Indeed, depositing
superconductors and magnets on 2D and 3D time-reversal
invariant topological insulators has become a booming
industry [26–29], as the superconducting proximity effect
has featured prominently in proposals for realizing
Majorana fermions in solid-state materials [26].
However, the opposite effect—how the topological state
might, in turn, affect proximate systems—has not been
explored to the same extent. In conventional proximity
effects, such as those involving superconducting or

magnetic phases, there is an order parameter which
penetrates into a proximate material. Is this phenomenon
different, or denied, for topological phases which do not
carry a local order parameter?
In this Letter, we demonstrate that, despite lacking a local

order parameter, topological phases can nonetheless exhibit a
proximity effect in which a topologically nontrivial system
causes a proximate system to become topologically non-
trivial as well. In many cases, the induced topological phase
of the proximate system will be an “inverse” of the original
phase, to be made precise shortly. In other cases, the entire
combined system can be driven into a new topological phase
by simply increasing the intersystem coupling. To avoid
confusion, we emphasize that this phenomenon is funda-
mentally different from the “topological proximity effect”
discussed in Ref. [30], where the gapless boundary states of a
three-dimensional topological insulator essentially move
into a proximate thin metallic film. In contrast, the setup
we envision involves coupling two bulk systems of the same
dimension to each other, and inducing a full bulk topological
phase; it is not just an effect on the boundary states. We will
hereafter refer to this phenomenon as the bulk topological
proximity effect (BTPE).
The structure of this Letter is as follows. We first detail

the setup for the BTPE and present general arguments for
why it is expected to work for a large class of topological
phases and intersystem couplings. For concreteness, we
demonstrate this phenomenon in a bilayer of free-fermion
systems in which one system with Chern number −1
induces Chern number þ1 in the second system. After
rigorously generalizing to all free-fermion topological
phases, we argue how this effect may be realized in
coupled spin chains, and we explicitly demonstrate it in
a one-dimensional SPT protected by Z2 × Z2 symmetry.
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Finally, we discuss generalizations of the BTPE, including
applications to intrinsic topological order.
General framework.—Our setup is a composite system

consisting of subsystems A and B, with identical Hilbert
spaces. However, we will be interested in Hamiltonians for
the combined system

H ¼ HA þHB þHAB; ð1Þ
in which HA and HB are very different: HA is a gapped
Hamiltonian with a topologically nontrivial ground state and
an energy gap of orderΔA, whileHB is anyHamiltonianwith
a much smaller energy scale WB ≪ ΔA. HAB is a coupling
between the subsystemswith strength gABwhich,we assume,
obeys WB ≪ gAB ≪ ΔA. The motivation for gAB ≪ ΔA is
that we would like to have a notion of A and B as two
independent subsystems (meaning the joint ground state
approximately factorizes: jψ0

ABi ≈ jψ0
Aijψ0

Bi), and we
require WB ≪ gAB so that subsystem B is “susceptible” to
A’s topological Hamiltonian. The precise nature of HB is
irrelevant in the strong intersystem coupling limit, and for
simplicity we will focus on the extreme limit HB ¼ 0; in
other words, without the coupling, system B is a set of
independent degrees of freedom, as in aKondo latticemodel.
Having a nonvanishingHB can lead to richer phase diagrams
in the intermediate coupling regime, and we give an example
of this below.
Let us first focus on a particular (and large) class of

topological Hamiltonians and a couplingHAB that could be
dominant in realistic systems. Specifically, we consider any
Hamiltonian HA which has an “invertible” topological
ground state ψA; i.e., there must exist an inverse ψA such
that the direct product of the two, ψA ⊗ ψA, is a topologi-
cally trivial state [31–33]. Examples of invertible states are
all SPTs, including fermionic SPTs such as Chern insula-
tors, and Kitaev or Majorana wires. As for the coupling
HAB, we focus on those whose ground state is a product
state of maximally entangled A and B sites, as depicted in
Fig. 1(c). Such couplings are prevalent and include, e.g.,
interlayer tunneling in bilayer fermion systems and anti-
ferromagnetic exchange coupling for bilayer spin systems.
With these mild assumptions, at infinite coupling

between A and B, the combined system is topologically
trivial because it is a product state. As the coupling is
decreased, naively, there could be a phase transition to a
topologically nontrivial ground state. In this Letter, how-
ever, we demonstrate that the strong and weak coupling
phases are smoothly connected for all free-fermion systems
and a class of interacting integrable models below. Since
this implies that the weak coupling phase of the composite
system is also topologically trivial, system Bmust carry the
inverse topological order as system A, even at weak
coupling, thus realizing BTPE. From another perspective,
system B “screens” the topological phase of system A so
that the composite system is neutralized or trivial. The
above holds for HB ¼ 0; if HB ≠ 0, system B can

potentially overscreen A and induce new topological
properties for the composite system.
Free-fermion BTPE.—We now provide a concrete

example of the topological proximity effect due to a
Chern insulator. Specifically, we use the following tight-
binding model for spin-1=2 fermions on the square lattice:

HCIðμÞ¼
X
k

hαβðkÞcAkαcAkβ

hðkÞ¼ðcoskxþcosky−μÞσzþsinkxσxþsinkyσy: ð2Þ

Here, cAkσ (c†Akσ) is the fermion annihilation (creation)
operator with wave number k and spin σ on layer A and
σx;y;z are the Pauli spin matrices. For 0 < μ < 2, the ground
state has the Chern number −1 and for μ > 2, the ground
state is trivial. The full Hamiltonian is given by

HA ¼ HCIðμ ¼ 1Þ; HB ¼ 0

HAB ¼ g
X
i

c†AiσcBiσ þ H:c:

For weak coupling, degenerate perturbation theory to
second order provides an effective Hamiltonian for B given
by

Heff
B ¼

X
k

heffαβðkÞc†BkαcBkβ; ð3Þ

heffðkÞ ¼ −
4g2

ΔðkÞ jψ
ex
k ihψ ex

k j; ð4Þ

where jψ ex
k i is the spinor of the excited state ofhðkÞ, andΔðkÞ

is its energy difference from the ground state of hðkÞ.
However, the conduction band ofHA must have the opposite
Chern number of the valence band (if both bands are filled,
then systemAwould be a trivial insulator). Thus,we find that
the effective ground state of HB has the Chern number þ1.

FIG. 1. Schematic of the bulk topological proximity effect.
(a) The starting point is a topological state in system A (blue) and
free, isolated degrees of freedom in system B (black). (b) At small
coupling (the dashed lines), the inverse topological phase is
induced in B, and the composite is trivial. (c) At infinite coupling,
the system is a product state.
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In fact, in all free-fermion models of the above type, in
which a nontrivial topological system A is tunnel coupled
to a flat band in the band gap of system A, the strong and
weak coupling limits are smoothly connected without any
phase transition. This is because the full single-particle
Hamiltonian has the form

H ¼
�
HA g

g 0

�
¼ 1

2
ðIþ τzÞ ⊗ HA þ gðτx ⊗ IÞ; ð5Þ

where the upper-left and lower-right blocks correspond to
the local basis of systems A and B, respectively [for
convenience, we have centered the band gap of A and
the flat band(s) of B at zero energy]. However, even after
HA is diagonalized (Hd

A ¼ UHAU−1), the form of the above
matrix can be preserved by changing the basis of B with the
same unitary U:

H ¼ U−1
�
Hd

A g

g 0

�
U; ð6Þ

with U ¼ I ⊗ U. The resulting eigenvalues are E�
n ¼

ðE0
n=2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

n=2Þ2 þ g2
p

, where E0
n represents the eigen-

values of HA. Hence, all eigenvalues are repelled from
E ¼ 0 if g ≠ 0, implying that there is no phase transition
between strong and weak coupling. This unambiguously
establishes the BTPE for all free-fermion topological
phases.
The interpretation of topological “screening” can be

explicitly shown from the ground state wave function

jψi ¼
Y
En<0

�
cos

θn
2
jφfill

n iA þ sin
θn
2
jφfill

n iB
�

×
Y
En>0

�
sin

θn
2
jφex

n iA − cos
θn
2
jφex

n iB
�
; ð7Þ

where tan θn ¼ g=E0
n and jφα

nia (α ¼ ex, fill, a ¼ A, B) is
the single-particle wave function for excited (ex) and filled
(fill) states of HA at g ¼ 0; the index a denotes the layer
that the electron is on. As g → 0 (θn → 0), the ground state
wave function is approximately the direct product of a
C ¼ −1 band of electrons in A and a C ¼ 1 band in B,
consistent with the perturbation argument above. For an
arbitrary g, the Berry curvature for the bands in the first and
second products are exactly the same as that of the filled
and excited bands, respectively, of HA at g ¼ 0.
Since the composite system is trivial, the nontrivial

nature of B is not immediately manifest. If A and B are
strictly identical, then the composite system with boundary
will have a gapped edge since the gapless mode of A
hybridizes with the counterpropagating mode of B [see
Figs. 2(a) and 2(b)]. However, in a terrace construction in
which the boundaries of A and B are separated, as shown in
Fig. 2(c), the gapless modes on the two different boundaries

interact weakly and are exhibited clearly in Figs. 2(c)
and 2(d). We note that, in this terrace construction,
increasing the coupling shifts the weight of the edge mode
initially on the B boundary onto the A side of the kink. This
construction works for any system, and we illustrate it for a
Kitaev chain in Fig. 2(e), in which Majorana bound states
are induced at the ends of system B.
In realistic models, HB is likely to be nonzero, but as

long as the intersystem coupling g is much larger than the
energy scale(s) in HB, the BTPE of the above type will
occur. However, the properties of the small-g regime
depend on the nature of HB, and they may exhibit a wide
range of phases. To illustrate this in the Chern insulator
example, we also considered HB ¼ γHCIðμÞ of the form
(2), but scaled down by a factor of γ (0 < γ < 1) relative to
HA [34]. Depending on the coupling g and the intrinsic
phase of B, parametrized by μ, a variety of Chern numbers
for the composite system can be achieved [see Fig. 3(a)].
First, consider the g ¼ 0 limit: the total Chern number is
simply the sum of the Chern numbers of each layer. Upon
increasing the coupling, however, it is striking that the
composite system can carry the opposite Chern number of
the original topological phase. In this case, for a slab of the
two systems, the gapless edge mode remarkably reverses
direction at finite coupling [see Fig. 3(b)]. This effect can
be thought of as an overscreening of the topological phase
of HA, where instead of canceling the Chern number it
induces a composite Chern number of the opposite sign.
Optimistically, one could design a device utilizing this
effect: since the chirality is controlled by the interlayer
coupling, one could imagine creating a low-dissipation,

FIG. 2. Topological proximity effect of a Chern insulator. (a) A
bilayer slab (in-)finite in the ðxÞ y direction, with the spectrum
shown in (b). (c) A “terrace” in which the left boundary of A is
separated from that of B. (d) The resulting spectrum, with weakly
coupled counterpropagating edge states in the bulk gap localized
at the distinct boundaries. (e) Schematic of a Kitaev wire BTPE.
Note the original Majorana zero modes (the large blue dots) and
the new Majorana modes (the large green dots).
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pressure-switchable diode where the pressure modifies the
interlayer tunneling to switch the easy-current direction.
Interacting BTPE.—We expect the BTPE to occur gen-

erally in interacting systems aswell. To illustrate, let us begin
with a concrete model in which the effect can be explicitly
demonstrated. For system A, we choose the “cluster state”
[35–37] or “ZXZ” Hamiltonian of a spin-1=2 chain:

HA ¼ −
X
i

σziσ
x
iþ1σ

z
iþ2: ð8Þ

This system possesses a Z2 × Z2 symmetry generated by
independent twofold rotations on the two alternating
sublattices a and b: g1¼

Q
j∈ae

iπσxj=2, g2 ¼
Q

j∈be
iπσxj=2.

One-dimensional systems with this symmetry have a Z2

topological classification, and the above Hamiltonian pro-
vides an example of the nontrivial phase.Nowwe add another
spin-1=2 chain B, with HB ¼ 0, and introduce the coupling

HAB ¼ g
X
i

ðσzi ~σzi þ σxi ~σ
x
i Þ; ð9Þ

where the operators with tildes act on the B spins. Per our
framework, such a coupling, when dominant, locks together
the corresponding A and B spins into singlets.
Because of the fact that HA is integrable (all eigen-

states can be labeled by the conserved quantities
σziσ

x
iþ1σ

z
iþ2 ¼ �1), degenerate perturbation theory can be

performed exactly. Since all one-body and two-body
operators anticommute with at least one conserved quantity,
the lowest order effect occurs at Oðg3Þ and yields the
effective Hamiltonian for B:

Heff
B ¼ g3

X
i

~σzi ~σ
x
iþ1 ~σ

z
iþ2: ð10Þ

Hence, system B precisely inherits the topological order of
system A (a Z2 SPT is its own inverse).

This behavior generalizes to other interacting SPTs, such
as a spin-1 chain in the Haldane phase [38] coupled to a
Kondo lattice chain of isolated spin-1 sites via antiferro-
magnetic exchange. In this case, second order perturbation
theory will imprint the exponentially decaying correlations
of chain A onto the effective Hamiltonian of chain B, and
we expect that the resulting effective nearest neighbor
antiferromagnetic interaction will place chain B in the
Haldane phase as well.
Beyond the framework.—While the assumptions specified

and exemplified above are useful for understanding a large
class of topological phases and their couplings to proximate
systems, it is interesting to consider relaxing those assump-
tions. In particular, thus far we have considered identical
Hilbert spaces for systems A and B, but allowing B to be a
different lattice, dimension, or even particle type may give
rise to new phenomena when coupled to A. In a similar vein,
the current framework specializes to couplings which, when
infinite, maximally entangle corresponding degrees of free-
dom of A and B, and the myriad ways of relaxing this
constraint, especially when A and B are different Hilbert
spaces, may prove fruitful. For example, one may imagine
coupling a bosonic SPT state (system A) to a fermionic
auxiliary system (system B) or vice versa [39].
Another interesting avenue involves invertible topologi-

cal phases with nonunique inverses. For example, system A
could be stably equivalent to a conventionally inequivalent
state, i.e., only equivalent after being combined with
additional trivial states. These systems might induce a
“stable” proximity effect where they are screened not by
their conventional inverse, but by a stably equivalent
inverse. For example, a ν ¼ 8 fermionic integer quantum
Hall state could be screened by a free-fermion ν ¼ −8 state,
or the (antichiral) bosonic integer quantum Hall E8 state to
which its inverse is stably equivalent [40,41]. We expect
that the choice of coupling terms between A and B would
determine this outcome.
Finally, we note that systems with intrinsic topological

order may also exhibit the BTPE, albeit of a different
variety than that considered above. For example, consider
two-dimensional Z2 topological order, realized by the
“toric code” Hamiltonian [42] for spin 1=2s on the links
of a square lattice:

HA ¼ −
X
s

Y
l∈s

σzl −
X
p

Y
l∈p

σxl ; ð11Þ

where s denotes stars of four links emerging from each
vertex, andp denotes spins on the square plaquettes. Like the
cluster state model, all of the terms in the Hamiltonian
commute, and thus they provide conserved quantities to label
eigenstates. However, given periodic boundary conditions,
there are an additional two global conserved quantitieswhich
endow A with a fourfold ground state degeneracy.
Upon adding an identical Hilbert space B of free spins ~σ

and coupling A and B with the Hamiltonian in Eq. (9), the

FIG. 3. Effect of nonzero Hamiltonian for system B. (a) Taking
HA ¼ HCIðμ ¼ 1Þ (Chern number −1 ground state) and
HB ¼ 0.2HCIðμÞ, the phase diagram as a function of coupling
g and μ is shown. The phases are labeled by the total Chern
number of the composite system. (b) Intermediate coupling can
completely reverse the direction of the edge state.
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lowest order effect [at Oðg4Þ] is to induce an effective
Hamiltonian in B given by the same star and plaquette
terms above. Hence, at small coupling, there is a proximity
effect in which the ground state of the composite system is
two copies of the toric code ground states. In contrast to the
above framework for invertible topological order, these two
copies are not smoothly connected to the trivial product
state at infinite coupling—the ground state degeneracy at
weak coupling is 16-fold. As a result, there is at least one
topological phase transition at an intermediate g. How this
occurs is nontrivial and would be an interesting subject for
future study.
The general setup for BTPE requires a separation of

energy scales forA andB, which is natural formany systems,
including Kondo lattices. Several parameters may control
the coupling g, including matrix elements between the states
of A and B (which depend on their constituents), the
separation between A and B (tunable by pressure or strain),
and, potentially, tunneling barriers between A andB (as used
in the superconducting proximity effect). Finally, while
BTPE is most natural for one- and two-dimensional systems,
it is possible that, in three dimensions, the roles of A and B
can be played by sublattices or internal degrees of freedom.
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