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We present evidence for Mott quantum criticality in an anisotropic two-dimensional system of coupled
Hubbard chains at half-filling. In this scenario emerging from variational cluster approximation and cluster
dynamical mean-field theory, the interchain hopping t⊥ acts as a control parameter driving the second-order
critical end point Tc of the metal-insulator transition down to zero at tc⊥=t≃ 0.2. Below tc⊥, the volume of
the hole and electron Fermi pockets of a compensated metal vanishes continuously at the Mott transition.
Above tc⊥, the volume reduction of the pockets is cut off by a first-order transition. We discuss the relevance
of our findings to a putative quantum critical point in layered organic conductors, whose location remains
elusive so far.
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A subject of strong current interest in condensed matter
physics is the metal-insulator transition (MIT) [1] with a
low critical end point Tc at which the Mott transition ceases
to be first order [2–4]. The nature of this critical end point
and its universality class is a long-standing issue. From
general considerations, one expects it to belong to the Ising
universality class [5,6], similar to the liquid-gas transition,
with the double occupancy playing the role of a scalar order
parameter of the transition. A canonical example is three-
dimensional (3D) Cr-doped V2O3, where critical exponents
extracted from electrical conductivity measurements very
close to the critical end point Tc ≃ 450 K are consistent
with the universality class of the 3D Ising model [7]. In
contrast, similar experiments on layered κ-type charge-
transfer salts with significantly lower Tc ≃ 40 K have
indicated unconventional Mott criticality [8]. They stimu-
lated subsequent experimental studies either objecting the
existence of unconventional behavior [9] or supporting it
[10]. Theoretical scenarios of the two-dimensional (2D)
Mott transition are also controversial, ranging from ordi-
nary Ising universality [11–13] to unconventional critical
exponents [14].
Recently, the question of the nature of the 2D MIT

transition has been raised again as new experiments on
κ-type and palladium dithiolene organic conductors support
either unconventional criticality [2] or 2D Ising criticality [3],
respectively. As the conductors studied in Ref. [2] possess
low-T ground states with various broken symmetries, the
unconventional Mott criticality seems to be generic and
unrelated to the proximity to symmetry broken states.
Instead, the fact that the critical end point Tc is relatively
low suggests quantum effects to become important and
necessitates a physical picture contrasting the one building
on classical phase transitions [15–17]. Furthermore, a

possible support for the 2D Mott quantum criticality comes
from the dynamical mean-field theory (DMFT) [18,19],
which reveals unexpected scaling behavior of the resistivity
curves in the high-T crossover region T ≫ Tc. A stringent
test of the link between this scaling behavior and the quantum
criticality appears, however, to be impossible since the latter
is masked in the half-filled 2D Hubbard model by the low-T
coexistence dome [20–23]. Moreover, various numerical
studies find that Tc remains finite also in the presence of
lattice frustration [24–30]. Finally, while the effective sup-
pression of Tc can be achieved with disorder, it requires the
proper treatment of Anderson localization effects [31–33].
In this Letter, we propose a different route to account for

a low critical end point Tc of the MIT. Considering the fact
that quantum fluctuations are enhanced in low-dimensional
systems with spatial anisotropy, we investigate, using two
complementary state-of-the-art numerical techniques, the
effect of anisotropic hopping amplitudes and try to locate
the putative quantum critical point at T ¼ 0 in the phase
diagram.
Model and methods.—We study the frustrated Hubbard

model on a square lattice with an anisotropic hopping at
half-filling:

H ¼ −
X

ij;σ

tijc
†
iσcjσ þ U

X

i

ni↑ni↓ − μ
X

i;σ

niσ; ð1Þ

with chemical potential μ and Coulomb repulsion U. The
hopping tij is t along the chains and t⊥ between the chains.
By tuning the ratio t⊥=t from 0 to 1, we bridge the limit of
uncoupled one-dimensional (1D) Hubbard chains (t⊥ ¼ 0)
and the isotropic 2D lattice (t⊥=t ¼ 1). In order to remove
the perfect nesting antiferromagnetic (AFM) instability of
the Fermi surface (FS) [34] also in the 2D regime, which
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would lead to an insulating state at any finite value of U
[35,36], we add geometrical frustration via next-nearest-
neighbor hopping t0 ¼ −t⊥=4.
The results are obtained by two complementary quantum

cluster techniques [37], which can both be described within
the framework of self-energy functional theory [38]. In the
cluster extension of DMFT (CDMFT) [39], a cluster of
Nc interacting impurities is dynamically coupled to an
effective bath. The impurity problem is solved using the
quantum Monte Carlo (QMC) Hirsch-Fye solver and
coupling to the bath is determined self-consistently. To
also make the study computationally manageable down to
the lowest temperature T ¼ t=40 in the 2D regime, where
the sign problem hampers the usage of the QMC solver on
larger clusters, we use a 2 × 2 plaquette cluster. The 2 × 2

cluster is a minimal unit cell which allows one to capture
both the 1D umklapp scattering process opening a gap in
the half-filled band [40] and short-range 2D AFM spin
fluctuations. To trace the Mott transition at zero temper-
ature, we use the variational cluster approximation (VCA)
[41,42] with a 2 × 2 cluster and one additional bath site per
correlated site as a reference system [22], i.e., an effective
eight-site cluster. In VCA, the grand potential Ω is
approximated by the self-energy functional (SEF) at its
saddle point. As variational parameters, we choose the
hybridization V between correlated and bath sites and
chemical potentials of the reference system μ0 and the
lattice system μ, respectively [43].
Phase diagram.—Our main results are summarized in

the ground-state phase diagram in Fig. 1. It shows our
estimate of the critical interaction strength Uc at which the
system undergoes a transition between Mott insulating and
metallic phases in the full range between the 1D and 2D
regimes. In agreement with the exact Bethe ansatz solution
[44] and bosonization approach [45], VCA yields the Mott
phase for any U > 0 in the 1D limit [46]. As shown in
Fig. 1, this changes dramatically upon coupling the chains:
single-particle hopping t⊥ shifts the critical interaction Uc
towards a finite value, thus enabling the interaction-driven
MIT. Initially, Uc increases steeply with t⊥ and then
continues to grow nearly linearly, as expected for the
MIT controlled by the ratio of Coulomb interaction to
kinetic energy gain. For t⊥=t > 0.2, the MIT line is found
to be first-order consistent with former studies of the
frustrated 2D Hubbard model [24–30]. In contrast, in the
strongly anisotropic case with t⊥=t ≤ 0.2, it marks a
smooth metal-insulator crossover down to T ¼ 0. This is
supported by a systematic reduction of the critical end point
Tc identified within CDMFT (see the inset of Fig. 1). All of
these aspects consistently suggest that t⊥ is a control
parameter which tunes the nature of the Mott transition
from strong first order in the 2D limit to continuous at
tc⊥=t≃ 0.2. We complement the phase diagram by showing
the change of the FS topology when tuning t⊥ for values of
the interaction close to Uc. Two main features come into

play: (i) finite t⊥ leads to a warping of the 1D FS and, in the
presence of interactions, to the formation of hole and
electron Fermi pockets of a higher-dimensional compen-
sated metal [47], and (ii) for values t⊥=t≳ 0.7 the com-
pensated metal structure of the FS disappears, going over to
a conventional large FS which coincides with the topo-
logical Lifshitz transition of the noninteracting FS.
Obtaining the phase diagram.—We now describe the

numerical results which lead us to the above phase diagram.
VCA provides the possibility of identifying and tracing
competing phases by analyzing the self-energy functional
Ωðμ; μ0; VÞ. For the interchain coupling t⊥=t ¼ 0.2, we
cannot resolve two disjoined SEF minima and the value
of V is thus expected to change continuously across the
critical interaction Uc; see Fig. 2(a). In contrast, for
t⊥=t≳ 0.3, the SEF has four saddle points, of which two
correspond to stable phases close to the phase transition: one
corresponding to the metallic, the other to the insulating
solution. These stationary points of Ωðμ; μ0; VÞ are maxima
with respect to μ and μ0, but minima with respect to
hybridization strength V. The existence of two distinct
minima in the SEF landscape shown in Fig. 2(b) results
in a jump of hybridization V when tuning across Uc, and
thus signals the first-order nature of the MIT.
Next, we focus on the ground-state energy E0 and the

double occupancy d. The latter is obtained as the derivative
of the grand potential Ω with respect to Coulomb repulsion
d ¼ ∂Ω=∂U. In the quasi-2D region we identify a clear kink
in the ground-state energy E0; see Fig. 3(a). It arises from a
level crossing of the insulating and metallic solutions and
gives rise to a jump in the double occupancy d at Uc, as
shown in Fig. 3(b). The latter exhibits hysteresis in the region

FIG. 1. Metal-insulator phase diagram of the half-filled Hub-
bard model (1) as obtained by the zero-temperature VCA and
CDMFT at T ¼ t=40. (Top inset) The combined VCA and
CDMFT estimate for the critical temperature Tc terminating
the first-order MIT; Tc is driven down to zero at tc⊥=t≃ 0.2, thus
providing evidence for the quantum critical nature of the MIT.
(Bottom insets) FS topology close to the critical interaction Uc in
different regions of the phase diagram indicated by arrows.
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with two solutions, as expected for the first-order transition.
Although a weak kink in E0 is also resolved for intermediate
values of t⊥, both the coexistence region and the jump in the
double occupancy shrink and vanish at tc⊥=t≃ 0.2 [48]. The
absence of a jump in d and a single minimum in the SEF
yield strong evidence for the continuous nature of the MIT.
A similar scenario emerges within a finite-temperature
CDMFT: while a clear jump in d ¼ ð1=NcÞ

P
ihni↑ni↓i is

found in the quasi-2D regime, it gradually decreases when
reducing t⊥ and finally converts into a crossover at
tc⊥=t ¼ 0.2. It remains smooth down to our lowest temper-
ature T ¼ t=40; see Fig. 3(b). As shown in Fig. 3(c), the
level crossing in the ground state is also reflected in the spin
sector and produces a jump in the cluster spin susceptibility
χsðqÞ ¼ ð1=NcÞ

R β
0 dτ

P
ije

iq·ði−jÞhSiðτÞSjð0Þi at the AFM
wave vector q ¼ ðπ; πÞ. In contrast, no distinction between
the response in χsðqÞ at q ¼ ðπ; 0Þ and q ¼ ðπ; πÞ wave
vectors at t⊥=t ¼ 0.2 indicates that remnant 1D effects play
an important role in the weakly coupled regime.
We turn now to finite-temperature consequences of the

continuous MIT seen at T ¼ 0. The estimate of Tc at a
given t⊥ was obtained by monitoring d as a function ofU=t
at fixed T; see Fig. 4. The low-T jump in d signaling the
first-order MIT remains up to Tc and turns into a smooth
crossover above Tc. As shown in Fig. 4(a), for small t⊥=t ¼
0.3 a smooth behavior in d is already recovered at
T ¼ t=30. In contrast, for t⊥=t ¼ 0.9, the jump converts
into a crossover at much higher temperature T ¼ t=12. By
repeating the above analysis for intermediate values of t⊥,
we extracted the t⊥ dependence of the critical temperature
Tc (see the inset in Fig. 1) consistent with a continuous
reduction of the jump in the double occupancy [48].
Spectral function.—To elucidate the microscopic origin

of the continuous Mott transition for t⊥=t≲ 0.2, we
calculate the single-particle spectral function Aðk;ωÞ ¼
−ð1=πÞImGðk;ωÞ, where Gðk;ωÞ is the lattice Green’s
function. Figure 5 shows the evolution of Aðk;ωÞ
upon increasing the interaction U at fixed t⊥=t ¼ 0.2.

In agreement with random-phase approximation studies
[50,51], we find that the destruction of the FS starts at
momenta k ¼ ðπ=2;�π=2Þ, where the interchain hopping
matrix elements vanish. As a result, a compensated metal
structure of the FS is formed with elliptic electron and
hole pockets around the k ¼ ðπ=2; 0Þ and ðπ=2; πÞ points.
A striking feature of the pockets is their symmetric form
contrasted with pockets found in coupled spinless fer-
mionic chains [52]. We ascribe this symmetry to quasi-
particle scattering off short-range 1D spin fluctuations with
q ¼ ðπ; 0Þ. On one hand, at intermediate interaction
strengths, the main part of the FS carrying most of the
quasiparticle weight follows closely the noninteracting FS.
On the other hand, the pockets shrink in size and become
very shallow close to Uc; see Figs. 6(a)–6(c). The con-
tinuous vanishing of the volume of Fermi pockets at Uc
implies the second-order nature of the MIT. Since the

FIG. 2. VCA self-energy functional Ω in the proximity of MIT
as a function of hybridization V=t for (a) t⊥=t ¼ 0.2 and
(b) t⊥=t ¼ 0.3. In (b) stable minima are indicated by thick
arrows; thinner ones mark unstable solutions. FIG. 3. (a) VCA ground-state energy E0 as a function of

Coulomb repulsion U=t. Filled (dashed) lines indicate metallic
(insulating) solutions for t⊥=t ¼ 0.2, 0.3, 0.5, 0.7, and 0.9 (from
left to right). (b) VCA double occupancy d across the MIT at
T ¼ 0; symbols stand for CDMFT results at T ¼ t=40. (c) Cluster
spin susceptibility χsðqÞ within CDMFT at T ¼ t=40; the upper
curves correspond to spin fluctuations at the AFM wave vector
q ¼ ðπ; πÞ and the lower ones to remnant 1D fluctuations at
q ¼ ðπ; 0Þ.

FIG. 4. Double occupancy d as a function of interaction U=t
obtained in CDMFT for (a) t⊥=t ¼ 0.3 and (b) t⊥=t ¼ 0.9. The
low-T jump in d signaling the first-order MIT turns into a
crossover above the critical end point Tc.
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inverse width of the hole or electron pockets defines a
characteristic length scale, ξ, one should be able to extract
the correlation length exponent, ν, from a careful study of
the critical behavior of the volume of the pocket as one
approaches Uc [1,48]. In contrast, the volume reduction of
the pockets is cut off by a first-order transition for larger t⊥;
cf. Figs. 6(d)–6(f) with t⊥=t ¼ 0.5.
Discussion and outlook.—Let us relate our findings

to recent experiments on the organic conductors with a
half-filled band [2]. Both κ-ðBEDT-TTFÞ2Cu2ðCNÞ3 and
EtMe3Sb½PdðdmitÞ2�2 (BEDT-TTF=bis(ethylenedithio)-
tetrathiafulvalene, dmit=1,3-dithiole-2-thione-4,5-dithio-
late, Me ¼ CH3;Et ¼ C2H5) are thought to be layered
systems with Hückel parameters close to an equilateral
triangular lattice [53]. Instead, careful ab initio calculations
for the latter show an appreciable 1D anisotropy with the
ratio of interchain to intrachain transfer around 0.82 [54]
We took this asymmetry into consideration: using VCA at

T ¼ 0 and CDMFT at finite T, we have found strong
evidence for Mott quantum criticality in coupled Hubbard
chains at half-filling. In this scenario, the interchain hopping
t⊥ acts as control parameter driving the second-order critical
end point Tc of the interaction-driven MIT down to zero in
the presence of strong anisotropy. At a threshold value of
tc⊥=t≃ 0.2, the volume of Fermi pockets shrinks to zero.
The resulting MIT is without a detectable jump in the double
occupancy or a visible coexistence region in the SEF.
In contrast, the volume reduction of the pockets is only
partial at larger t⊥: the jump in the double occupancy and the
existence of two distinct degenerate minima in the SEF are
consistent with a first-order transition.
The continuous MIT at T ¼ 0 offers a possibility for

understanding the scaling behavior of resistivity curves in
the high-T crossover region T ≫ Tc usually attributed to
(hidden) 2D Mott quantum criticality [18,19]. It is an
interesting question as to whether the quantum critical
behavior emerges also in coupled spinless fermionic chains
displaying similar FS breakup into Fermi pockets [52].

While the 2 × 2 plaquette cluster used is known to
overestimate the singlet formation [37], we expect the
unveiled quantum critical behavior to be robust. Indeed,
former CDMFT studies on larger clusters of up to 16 sites
have provided evidence for a continuous dimensional-
crossover-driven MIT down to the lowest accessible
temperatures [55]. We believe that this scenario is not
restricted to quantum cluster descriptions of the system
but should also emerge in lattice simulations, provided that
the range of AFM spin fluctuations is reduced, e.g., by
geometrical frustration or disorder [56,57]. This leads,
however, to a severe sign problem which renders lattice
QMC simulations very expensive [58]. In this respect, a
promising route avoiding the main shortcomings of QMC
is offered by tensor network methods [59] adapted recently
to fermionic systems [60,61]. Our results provide a novel
axis in the phase diagram along which Tc can be tuned to
zero. It remains to be verified if this quantum critical
behavior can explain fingerprints of the unconventional
Mott criticality observed in layered organic conductors.
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FIG. 5. Evolution of the FS with electron and hole pockets (see
the text) for t⊥=t ¼ 0.2 when approaching Uc=t≃ 3.22 from
below: (a) U=t ¼ 2.7, (b) U=t ¼ 3.2, and (c) U=t ¼ 3.22. Red
solid lines show the noninteracting dispersion.

FIG. 6. Low-energy part of the single-particle spectral function
Aðk;ωþ iηÞ for t⊥=t ¼ 0.2 (top panels) and t⊥=t ¼ 0.5 (bottom
panels) obtained within VCA at T ¼ 0, η ¼ 0.05. The FS pockets
are found (a),(d) for U < Uc and (b),(e) at U ≲ Uc; in the
insulator at (c),(f) U > Uc, their disappearance signifies the
vanishing of the FS, and hence the MIT.
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