
Elasticity in Amorphous Solids: Nonlinear or Piecewise Linear?

Awadhesh K. Dubey, Itamar Procaccia, Carmel A. B. Z. Shor, and Murari Singh
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel

(Received 9 December 2015; published 26 February 2016)

Quasistatic strain-controlled measurements of stress versus strain curves in macroscopic amorphous
solids result in a nonlinear-looking curve that ends up either in mechanical collapse or in a steady state with
fluctuations around a mean stress that remains constant with increasing strain. It is therefore very tempting
to fit a nonlinear expansion of the stress in powers of the strain. We argue here that at low temperatures the
meaning of such an expansion needs to be reconsidered. We point out the enormous difference between
quenched and annealed averages of the stress versus strain curves and propose that a useful description of
the mechanical response is given by a stress (or strain) -dependent shear modulus for which a theoretical
evaluation exists. The elastic response is piecewise linear rather than nonlinear.
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Materials designated as “amorphous solids” span a large
class of noncrystalline materials that exhibit an elastic
response to small strains or stresses. In this class, one finds
“tough” materials like metallic glasses as well as “soft”
materials like foams, with many intermediate (in strength)
materials in between. All this host of materials display
initially a linear response to a quasistatic external loading
(strain γij or stress σij) with a shear modulus that relates the
stress to the strain. Omitting tensor indices for notational
simplicity, one writes

σ ¼ μγ; γ ≪ 1; ð1Þ
with μ being the shear modulus.
Upon the increase in the external loading, this linear

relation appears to fail. The response of the amorphous
solid begins to mix elastic intervals interspersed with
plastic events [1–6], leading generically to an apparent
nonlinear dependence of the stress as a function of the
strain; see Fig. 1 as an example. The stress versus strain
curves for large values of the strain either end abruptly due
to a catastrophic failure of the material or display a regime
of “steady state” where the shear modulus μ appears to
vanish. Viewing stress versus strain curves of this type, one
is tempted to present them before the onset of the steady
state as a nonlinear expansion, referred to as “nonlinear
elasticity,” in the form (again with tensor indices omitted)

σ ¼ μðγ ¼ 0Þγ þ B2ðγ ¼ 0Þγ2 þ B3ðγ ¼ 0Þγ3 þ…: ð2Þ

The aim of this Letter is to discuss the validity of such
expansions for generic amorphous solids at low temper-
atures and, in fact, to argue that they should be carefully
reconsidered. The discussion will also make clear what we
mean by “low temperatures.”
It is already known that at zero temperature T ¼ 0 the

nonlinear coefficients in Eq. (2) do not exist in the
thermodynamic limit [7]. The issue raised here is what

the nature is of the elastic response of amorphous solids at
finite temperatures. We will show that, in fact, one should
consider the elastic response of amorphous solids between
plastic events, and there one can invariably define a
“piecewise linear” elastic response in the form

Δσ ¼ μðγÞΔγ; for any value of σ and γ; ð3Þ
with μðγÞ determined theoretically; cf. Eq. (4) below. We
should stress that this piecewise linear law is also valid in
the steady state regime with a finite shear modulus in spite
of the apparent flat dependence of the stress on the strain.
The difference between the approach of Eq. (2) and the
proposition Eq. (3) requires a discussion of the difference
between quenched and annealed averages. A quenched

FIG. 1. Typical stress versus strain curves obtained from
molecular simulations using a two-dimensional Kob-Andersen
glass former with a 65:35 ratio of 1000 point particles having
Lennard-Jones interaction with longer and shorter interaction
lengths. The curves shown are obtained by averaging 100
individual stress versus strain curves obtained from 100 realiza-
tions of the initially prepared glass. The temperatures shown are
in Lennard-Jones units as explained in the text. Customarily, one
fits a nonlinear expansion like Eq. (2) to such curves. We argue in
this Letter that such nonlinear expansions are not tenable.
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average of the shear modulus will be defined below as the
result of measuring the slope of a stress versus strain curve
in each individual realization of the glass and averaging the
result. An annealed average will be defined as averaging
stress versus strain curves over many realizations and
measuring the local slope.
To establish the proposed “law” Eq. (3), one needs to

examine first small systems at sufficiently small temper-
atures (to be determined below) and learn how to approach
the thermodynamic limit. In this Letter, we will use
quasistatic strain-controlled protocols with simple shear.
The advantage of using small systems and low temper-
atures is that one can resolve the stretches of strain for
which the response of the system is purely elastic, as these
are punctuated by intervening plastic events. The discus-
sion below will be exemplified by molecular dynamics
simulations at low temperatures. Obviously, in such sim-
ulations one deals with systems that are not in thermody-
namic equilibrium whose attainment requires astronomical
relaxation times. Nevertheless, we will show that by
increasing the strain quasistatically we can equilibrate
the systems in the restricted sense that between plastic
events the average stress and the average energy reach
stationary values. We refer to such states as “restricted
temperature ensembles” while not in true thermal equilib-
rium, they nevertheless succumb to thermal statistical
mechanics. In other words, we will demonstrate that for
our glasses the shear modulus can be computed for any
value of the strain by using the thermal expression [8–10]

μðγÞ ¼ μBðγÞ −
V
kBT

½hσ2i − hσi2�; ð4Þ

where μB is the usual [11,12] Born approximation for the
shear modulus and V and T are the volume and the actual
temperature of the glass, respectively. kB is Boltzmann’s
constant. The stress fluctuations are measured as usual in an
equilibrated Gibbs ensemble. Below, we will use the
notation

μFðγÞ≡ V
kBT

½hσ2i − hσi2�: ð5Þ

Numerical simulations.—To generate data for the present
discussion, we perform molecular dynamics simulations
using the Kob-Andersen model, in which point particles
interact via a Lennard-Jones potential. There are two types
of particles A and B, and the parameters of the interaction
potentials can be found in Ref. [13]. The system is prepared
by first randomizing the particles in a volumeV, and thenwe
run molecular dynamics at T ¼ 0.8 in Lennard-Jones units
for which the Boltzmann constant kB ¼ 1. After equilibra-
tion the system is quenched, again using molecular dynam-
ics, to temperature T ¼ 0.001 at a rate of _T ¼ 10−6.
Simulations are performed at this final temperature until
the mean energy of the system stabilizes, exhibiting a time-
independent value. Simulations of quasistatic straining are

then performed either at this temperature or at any desired
higher temperature which is obtained by heating up the
system. After reaching the desired temperature, one waits
again for the stabilization of the mean energy. Of course, the
time taken for stabilization is much shorter than the glass
relaxation time (known as τα), and the systems considered
are not in true thermal equilibrium. Wewill argue, however,
that they reach a “restricted”Gibbs ensemble that allows for
the definition of meaningful statistical averages.
Once the system has stabilized its mean energy, we strain

it quasistatically using simple shear with Lees-Edwards
periodic boundary conditions [14]. Strain steps of magni-
tude δγ ¼ 2 × 10−4 are taken, allowing the system to
stabilize both its mean energy and mean stress for
105 MD steps after every such increase. Stabilization is
then obtained when the average energy and the average
stress are constant over additional 2 × 105 MD steps. Next,
the mean stress σintxy and the second moment of the stress σ2

are measured for each realization. At this point, we record
the mean stress as a function of the strain. Finally, we
average the first and second moments of the stress over our
different realizations to obtain hσi and hσ2i. With systems of
1000 particles the stress versus strain curves for every
realization reveal different characteristics from the averaged
curves shown in Fig. 1. Typical such stress versus strain
curves for individual realizations are shown in Fig. 2 at
different temperatures. The different realizations show
clearly the piecewise linear stretches between plastic events
in which the stress drops suddenly. The nature of the plastic
events changes before and after the “yield” which is
followed by the steady state regime. Before yield, the events
are small, and they are known at T ¼ 0 to be represented by
individual Eshelby quadrupolar displacement fields that are
associated with small energy drops that are system size

FIG. 2. Individual realizations of stress versus strain curves for
systems of 1000 particles at different temperatures. Note that
individual plots never attain a zero shear modulus between plastic
events.

PRL 116, 085502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 FEBRUARY 2016

085502-2



independent. Beyond yield at T ¼ 0, the events are system
spanning events in which the energy drops are subextensive
[4]. Also at finite temperatures, one sees in Fig. 2 the change
from small stress drops to large ones [15]. The highly
serrated nature of the stress versus strain curves ismasked by
the averaging ofmany realizations shown in Fig. 1, aswell as
in the thermodynamic limit. For large systems, the density of
events increases enormously, as the strain intervals between
plastic events decrease rapidly with the system size [16].
Accordingly, we need to examine carefully the elastic
response of the system and how to interpret the thermody-
namic limit in a meaningful way.
The elastic response and quenched averages.—Denote

the sequence of strain increments as Δγi and the thermally
averaged stress measured after the system stabilizes as σi.
To calculate the shear modulus μ from the slope of the
thermally averaged stress versus strain, we determine a
sequence of values σi that satisfies σiþ1 > σi and compute
the average slope where now the average is over the
sequence. Once we have found a couple of stress values
satisfying σiþ1 < σi, we begin a new sequence of increas-
ing stress values and average again the slope for that
sequence. We associate the value of this average slope with
the mean strain in the sequence. At this point, we introduce
the quenched averages. Measuring then the observed value
of the slope, we average it over Oð100Þ realizations at the
same values of T and in a small bin of γ values and denote
the results as μðγ; TÞ. In parallel, for each measured
thermally averaged stress, we compute also the stress
fluctuations and evaluate the Born approximation directly
from the known Hamiltonian of the system. We then
compute the expression for the shear modulus as provided
by Eq. (4). As before, we average the resulting number over
Oð100Þ realizations. The two evaluations of the shear
modulus are compared in Fig. 3.

This comparison allows us to reach a number of
important conclusions. (i) The two evaluations agree.
This means that the actual elastic response should be
considered piecewise linear rather than resulting from a
nonlinear expansion. In no way can one say that the local
slope is, say, given by μðγ ¼ 0Þ þ 2B2γ þ 3B3γ

2 þ….
Throughout the strain range, the stress fluctuations reduce
the Born term to predict correctly the local linear response
of the system. This includes the steady state regime of the
strain-controlled protocol where it is customary to take
the shear modulus as zero. (ii) For the higher temperatures,
the evaluation of the local slopes should be done with care,
since temperature fluctuations begin to introduce “spuri-
ous” apparent slopes in the stress versus strain curves. The
temperature T ¼ 0.1 is the highest temperature for this
particular system for which we can trust the procedure. At
higher temperatures, there are too many intervals with
σiþ1 < σi; it becomes too difficult to separate mechanical
increases of stress due to strain changes from random
temperature fluctuations in the stress. In this sense we are
limited to “sufficiently low temperatures.”
Annealed averages.—At this point, we need to discuss

the meaning of the local slope of the annealed average of
the stress versus strain curves that are shown, for example,
in Fig. 1. We already mentioned that nonlinear expansions
in γ around γ ¼ 0 are untenable at T ¼ 0 and probably also
at finite but low temperatures. The question is whether the
local slope of such curves yields a number that is the same,
or close to, our μðγÞ. The answer is negative as can seen in
Fig. 4. It turns out that averaging the stress versus strain
curves before computing the local slopes results in a
smoother-looking curve which is nevertheless not really
differentiable. It is made of individual contributions in
which every plastic drop is a singular event where differ-
entiability is lost. Since these events occur at different
values of γ for each realization, averaging results in
smoother-looking curves, but the local slope of the

FIG. 3. Comparison of the direct measurement of quenched
averages of the shear modulus from the local slope of the strain
versus stress curves and the theoretical expression Eq. (4).

FIG. 4. An example of the comparison of annealed and
quenched averages of the local slope of the strain versus stress
curves and the theoretical expression Eq. (4). This example is at
T ¼ 0.01, but the conclusion is identical in all the tested
temperatures: Except at γ ¼ 0, the results of the annealed and
the quenched averages of the stress versus strain curves differ
greatly.
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resulting annealed average is not the shear modulus as
computed from its theoretical definition Eq. (4). To make
this point crystal clear, we show in Fig. 5 the annealed
averaged stress versus strain curve at T ¼ 0.001 and
superpose on it the actual realizations that give rise to it
by averaging. As said, the discrepancy is most glaring in the
steady state regime, but it is equally severe at each value
of γ ≠ 0.
Finally, we need to discuss the relevance of these

findings to the macroscopic experiments in which it is
impossible to resolve the tiny stress drops which are
extremely dense, resulting in a relatively smooth-looking
curve. If we accept the tentative view that such curves are
equivalent to our annealed procedure due to self-averaging,
then we must conclude that their local slope is not
providing a correct measurement of the shear modulus
as a function of γ. The discrepancy is, of course, most
glaring in the steady state regime, where the annealed
protocol results in a vanishing shear modulus. This is
clearly incorrect, since the strained-controlled system can
support a stress without flowing, meaning that the shear
modulus cannot be zero. Here we find the discrepancy
occurs already in the so-called “elastic regime.” To get a
correct measurement of μðγÞ, one should measure the stress
fluctuations and estimate the Born term to compute Eq. (4).
This is, of course, not an easy task, but the discussion
presented above should provide a warning as to the proper
interpretation of the local slopes of macroscopic stress
versus stress curves.
Concluding remarks.—The main point of this Letter is

that in random systems one can expect that quenched and
annealed averages might yield different results. This is
shown to be particularly true for the shear modulus, which
can be computed either for each realization and then
averaged or rather from an average of stress versus strain

curves. The answer is very different, as can be seen from
Fig. 4. The question “which is then the relevant shear
modulus” is answered in our opinion by comparing with
the theoretical expectation Eq. (4). This theoretical expres-
sion is derived for a system in thermal equilibrium. Another
result of the present study is that, although quenched
glasses are not at true thermal equilibrium, they can be
thermalized in the restricted sense that their average energy
and stress are stationary. In that situation, the stress
fluctuations can be measured, and the theoretical value
of the shear modulus is in very good agreement with the
quenched rather than the annealed average as described
above. We therefore propose that measurements of shear
moduli and other mechanical indices that employ annealed
or self-averages must be considered with extra care. These
may not be the actual indices that are better revealed by
either quenched averages or by expressions of the type
of Eq. (4).
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FIG. 5. The annealed stress versus strained curve (continuous
black line) and the actual segments of linear response of the
various realizations that were annealed to get the continuous line.
Except at γ ¼ 0, the annealed procedure does not supply the right
information regarding the mechanical response.
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