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An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical
model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-
density plasma, strongly slows, and then increases its group velocity during propagation within a target.
The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-
class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated
protons, and demonstrate a significant increase of their energy compared with the proton energy generated
from optimized ultrathin solid dense foils.
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Many acceleration concepts using short relativistically
intense laser pulses are applied for generating high-energy
ions [1,2]. Most mechanisms of laser-triggered ion gen-
eration are tailored to a forward acceleration of ions from
solid targets, but a new trend has recently appeared based
on using low-density targets [3,4], which could be related
to advanced materials such as aerogels, nanoporous carbon,
etc. The hope is that for lasers with ∼1 PW power they may
increase ion energy compared with solid targets. The
challenging way to accelerate ions up to ∼1 GeV is ion
wakefield acceleration [5,6], but this is a difficult task
because heavy particles cannot be preaccelerated and
trapped by the wakefield as easily as electrons can [7,8].
For an effective acceleration in a rare plasma, similarly to

electron wakefield acceleration, ions must be preacceler-
ated up to a relativistic velocity. Several two-stage schemes
for ion acceleration have been proposed [9–12] using thin
foil or microdroplets to preaccelerate ions (in particular,
due to a radiation-pressure-dominated regime [13]), which
can then be trapped and accelerated in a gas plasma. For
this scenario, an exawatt-class laser is required. Laser
energy is less demanding for a near-critical-density plasma
used for ion acceleration at a second stage [14]. The laser
snowplow effect in a near-critical-density plasma, where
the electrostatic potential generated by the laser pulse
accelerates and reflects ions, has been discussed in
Refs. [5,15], similarly to collisionless electrostatic shock
acceleration [16].
A pulse of intense slow light can trap slow or even at-rest

ions in its ponderomotive sheath potential and accelerate
ions. But a laser pulse with a group velocity significantly
less than the speed of light cannot accelerate ions to a high
energy ∼1 GeV until the group velocity itself starts to
increase during pulse propagation. In this Letter, we
propose a new scheme for ion acceleration by a laser pulse
from a target with an electron density near the threshold of

relativistic transparency. The key point is the capability for
the laser pulse first to slow and then to increase its group
velocity monotonically. Ions are accelerated on the up-
going laser ponderomotive field similarly to electron
acceleration on the down-going pulse ramp [17]. The
monotonic increase of the pulse group velocity makes ions
achieve a synchronized acceleration by slow light (SASL).
We present an analytic model and 3D particle-in-cell (PIC)
simulations that demonstrate how SASL works when
the increase of the pulse group velocity in a near-
critical-density plasma is due to relativistic self-focusing,
channeling, and evolution of electron density. Schemes of
something similar to particle-field synchronization have
been proposed by Katsouleas [18] (accelerated electrons
and wakefield in a rare plasma with a decreasing density)
and by Bulanov et al. [19] (accelerated ions and electro-
magnetic field in the radiation-pressure regime).
A relativistic laser pulse can propagate in a plasma with

the electron density ne=γnc < 1, where nc is the electron
critical plasma density and γ is the electron gamma factor.
The group velocity vg ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ne=γnc

p
(c is the speed of

light) of the light pulse inside the plasma should be small
for effective loading and trapping of the ions in a self-
consistent ponderomotive sheath. This is possible only in a
rather narrow range of target densities, ne ∼ γnc, which
slow a laser pulse and allow only the very top of the pulse
with a sufficiently large intensity to propagate. For a given
laser intensity, we should correspondingly expect a sub-
stantial selectivity of the target density.
When the front of a laser pulse hits an overdense target

(ne > γnc), it penetrates to a skin depth ∼c ffiffiffi
γ

p
=ωpe and

pushes electrons by the ponderomotive force Fp. This force
moves electrons deeper into the target, creating an electron
density spike at the pulse front until Fp is balanced by the
charge separation electric force (see, e.g., Refs. [20,21]),
−∇Φ ¼ eE ∼ Fp. The slower the pulse propagation, the
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more accurate the estimate eE ¼ Fp. To describe the
SASL mechanism qualitatively, we adopt this equality

and the widely used estimates Φ ¼ mec2γ and γ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2ðx; tÞ=2

p
for the ponderomotive potential and

gamma factor, where a is the normalized amplitude of
the laser vector potential. Initially, the scale length of the
pulse intensity is the skin depth. It increases in time (as
laser pulse intensity increases) and reaches a value ∼c=ω0,
when the target becomes transparent for the near-peak
intensity. The pulse starts propagating inside the target with
a small group velocity vg ≪ c. In some specific cases, the
group velocity can increase as the light penetrates deeper
into the plasma, for example, as a result of relativistic self-
focusing or a monotonic decrease of the target density from
front to back. The ponderomotive electric sheath, which
propagates in the plasma with the same group velocity, i.e.,

Φ ¼ mec2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2ðx − vgtÞ=2

q
, can trap some ions. If the

rate of ponderomotive ion acceleration is close to the rate of
the laser pulse acceleration, then the ions gain energy very
efficiently. To justify this, we consider the equations of
motion for a test ion (a proton, for definiteness) accelerated
in the ponderomotive sheath

dp
dt

¼ −
d
dξ

ΦðξÞ; dx
dt

¼ v ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p ; ð1Þ

where the coordinates x and ξðx; tÞ ¼ x − tvgðtÞ are nor-
malized to the characteristic pulse spatial width σ. The time
t, the velocities v and vg, the momentum p, and the sheath
potential Φ are, respectively, normalized to σ=c, c, mpc,
and mec2=ρ (ρ ¼ me=mp ¼ 1=1836).
Equation (1) describes a nonlinear oscillator and allows

finite and infinite motion. Finite motion corresponds to ion
reflection from the sheath as for acceleration by a colli-
sionless shock wave [22]. For example, in the nonrelativ-
istic limit p ≪ 1, Eq. (1) has a well-known solution in the
case of a constant group velocity vg ¼ vg;0. If the initial
proton velocity p0 is less than vg;0, i.e., the parameter

δv ¼ p0 − vg;0 < 0 and Φmax ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20=2

p
> ðδvÞ2=2

(cf. Ref. [14]), then the proton is reflected by the ponder-
omotive potential and attains the velocity 2vg;0 − p0. In the
case of an accelerating pulse, i.e., a time-dependent group
velocity vgðtÞ, the proton after being reflected can be caught
by the pulse and reflected again. Each reflection increases
the proton momentum in accordance with the instantaneous
pulse velocity. These multiple reflections significantly
accelerate the ion if it is in phase with the group velocity
increase. We call this the SASL case.
As an example, we consider a linearly increasing group

velocity vgðtÞ ¼ vg;0 þ w0t in the nonrelativistic case
p ≪ 1. The corresponding analytic solution ξðtÞ is given
in quadrature by the expression

t − t0 ¼ �
Z

ξ

ξ0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ξ20 þ 2½Φðξ0Þ − ΦðzÞ� − 4w0ðz − ξ0Þ

q ;

ð2Þ

where ξ0 ¼ ξðt0Þ and _ξ0 ¼ _ξðt0Þ. Equation (2) describes the
ion motion starting at the instant t0 from the position
corresponding to ðξ0; _ξ0Þ. For finite (oscillatory) motion,
there are two return points in the pulse reference frame
where _ξ ¼ 0. In the lab frame, one of the return points
corresponds to the maximum distance of the ion from the
sheath (the point with the maximum coordinate ξ), and the
second return point is the electrostatic sheath reflection
point. The direction of ion motion from one return point (or
the initial point corresponding to t0 ¼ 0, ξ0 ¼ x0, _ξ0 ¼ δv)
to the other defines the proper sign choice in Eq. (2).
To illustrate the obtained analytic solution given by

Eq. (2), we present phase plots for the case of a Gaussian
spatial profile of the accelerating ponderomotive electric
field. Figure 1 clearly demonstrates ion oscillations with
multiple reflections from the pulse (SASL) for a suffi-
ciently small pulse acceleration w0, which allows an
effective energy increase. The existence of two roots of
the equation _ξ ¼ 0 defines a restriction on w0 for which
SASL is allowed:

w0 ≤
1

2ðx0 − ξ�Þ
�
Φðξ�Þ − Φðx0Þ −

ðδvÞ2
2

�
; ð3Þ

where the value ξ� is defined from the solution of the
equation Φðξ�Þ − Φðx0Þ ¼ ðδvÞ2=2þ ðξ� − x0ÞΦ0ðξ�Þ. For
a given w0, we can find the domain of initial values ðx0; δvÞ
satisfying the SASL condition. Correspondingly, there is a
maximum value of w0 above which a synchronized ion-
pulse motion is impossible. The dependence of the maxi-
mum pulse acceleration maxðw0Þ on the maximum laser
pulse amplitude is shown in Fig. 2. The steep increase of
maxðw0Þ with the laser field amplitude for sufficiently high

FIG. 1. Phase space for an ion starting from x0 ¼ 3 with
δv ¼ 0.01. The gray curve (w0 ≈ 0.028) separates the finite and
infinite regimes illustrated by the examples w0 ¼ 0.001 (at the
right) and w0 ¼ 0.004 (at the left). The laser amplitude is
a0 ¼ 60.
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jδvj (i.e., δv ¼ �0.05; see the dashed curve in Fig. 2), in
fact, demonstrates the existence of the SASL threshold;
i.e., ðδvÞ2=2 ¼ Φmax − Φðx0Þ.
From the first integral of Eq. (2), _ξ2=2 − _ξ20=2 ¼

Φðξ0Þ − ΦðξÞ − 2w0ðξ − ξ0Þ, we can estimate the proton
energy increase. For protons initially at rest, the proton
energy evolves as ε ¼ 2w0ðvt − xÞ þ Φðξ0Þ − ΦðξÞ. In
average, an ion moves together with the laser pulse and
has a constant acceleration x ∼ w0t2, which results in an ion
energy increase as w2

0t
2. However, such a rapid energy gain

is only in the nonrelativistic limit. The nonrelativistic
solution presented can describe ion acceleration only for
ε ≪ mpc2, while the SASL can yield a much higher ion
energy. For a linear time dependence of vg, the relativistic
nonlinearity in Eq. (1) sooner or later breaks the SASL. To
describe the relativistic regime more accurately, we must
take the natural saturation of the group velocity at the speed
of light into account. We present the corresponding
illustration in Fig. 3 as a result of solving Eq. (1) numeri-
cally for the saturating group velocity vg ¼ w0t=ð1þ w0tÞ,
which shows continuous particle acceleration up to rela-
tivistic energies. The average energy of accelerated protons
increases almost linearly with the propagation distance and
highlights the SASL advantage.

Other physical effects accompanying the laser pulse
propagation, for example, pulse depletion, deformation of
the pulse shape, violation of the ideal electron equilibration
eE ∼ Fp, complicate the theoretical model. They might
degrade the theoretical estimates of the ion energy gain, but
the basic principle of the SASL should remain. To confirm
this, we performed 3D PIC simulations for short (30 fs
FWHM duration) and tightly focused (4λ FWHM spot size)
Gaussian laser pulses using the code MANDOR [23]. The
peak laser intensities in the focal spot were varied from
I ¼ 5 × 1020 W=cm2 ð3 JÞ to I ¼ 1022 W=cm2 ð60 JÞ. The
pulse was focused on the front side of a thin CH2 plasma
target, which consists of electrons, hydrogen ions, and fully
ionized carbon ions (C6þ). The target densities were
decreased from the solid mass density 1.1 g=cm3

(ne ¼ 200nc) to the density 5.5 mg=cm3 (ne ¼ nc). The
target thickness l was varied from 3 nm to 30 μm.
Several runs with different target densities and thick-

nesses were performed to find the maximum proton energy.
The results of simulations are shown in Fig. 4 (for 3 and
30 J lasers) by the dots, which correspond to those target
thicknesses which maximize proton energy. Figure 4 dem-
onstrates an existence of certain resonant (optimal) den-
sities providing enhanced proton acceleration inside a
target. Using a 3 J laser pulse does not effectively
synchronize the protons and laser pulse, although there
is some proton energy increase (up to 30%) during
acceleration inside a target. An effective SASL acceleration
occurs at considerably higher pulse energy. We demon-
strate this with the example of proton acceleration by a
petawatt-class laser (30 J). For a target with an optimal
density of 20nc, a significant increase of the maximum
proton energy was found and ∼80% of the total energy is
acquired inside the target. For such a density, the front wing
of the laser pulse does not penetrate into the target, but the
near-peak intensity does penetrate and propagates inside
the plasma with an increasing group velocity (solid curve in
the inset in Fig. 5), which can be roughly approximated as
vg ¼ cð0.04þ 0.0045ωtÞ (dashed line in this inset). The
laser-induced electrostatic sheath field corresponds well to

FIG. 2. Maximum pulse acceleration above which a synchron-
ized ion-pulse motion is impossible for δv ¼ 0 (solid curve) and
δv ¼ �0.05 (dashed curve).

FIG. 3. The proton energy gain for x0 ¼ 1 and p0 ¼ 0 versus
the propagation length for the ponderomotive potential charac-
terized by a0 ¼ 60 and vg ¼ w0t=ð1þ w0tÞ, where w0 ¼ 0.003,
0.005, 0.007 (the numbers near the curves). The dashed curve
shows the energy gain for a0 ¼ 60 and vg ¼ 0.0005t.

FIG. 4. Maximum proton energy versus target electron density
for optimal target thickness (black dots) for laser energies of 30
and 3 J (inset). Gray dots show maximum energy gained inside
target.
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the Gaussian-shape potential with a0 ¼ 100 and σ ¼ 2c=ω
(the dashed curve in Fig. 5). For a 30 J laser and ne ¼ 20nc,
the increase of the pulse group velocity is sufficiently small
(w0 ¼ 0.009), which is favorable for an effective trapping
of the protons in the ponderomotive potential (cf. Fig. 2).
The protons gain significant energy as a result of the SASL
mechanism. Synchronized motion of the proton front and
ponderomotive sheath is clearly seen in Fig. 5 (cf. black and
gray dots in the inset). We estimated the energy gain of the
test protons (initially at rest or weakly preaccelerated) as
the solution of Eq. (1). At the distance of 6 μm, the protons
gain energy of 350–400 MeV (see Fig. 6), which is
consistent with the PIC simulation result (black dots in
Fig. 6). For x > 6λ, the electrostatic potential overtakes the
protons and decelerates them as a result of the transition to
the relativistic regime and violation of the phasing in.
However, for petawatt-class pulses, the targets of multi-μm
thicknesses are weakly sensitive to such dephasing.
Simulation shows that target which is 5 times thicker than
the optimum target gives only a 12% decrease of proton
energy for the laser pulse with energy of 30 J. Such a pulse
can accelerate 109 protons with the energy in excess of
300 MeV. More results on maximum proton energy for
different pulse energies are shown in Table I, where δε=ε
quantifies which additional energy can be picked up with
the SASL mechanism (last column).

In conclusion, we have proposed a new model of proton
acceleration by an ultraintense slow light pulse interacting
with low-density targets. The key points of this mechanism
are to stop the laser pulse at the front of the target and then
accelerate the infiltrating intense part of the pulse inside a
plasma at the same rate as the proton energy increase in a
ponderomotive potential to achieve synchronized acceler-
ation by slow light (SASL). In the case considered, the
linearly polarized laser pulse propagates and increases its
group velocity as a result of a relativistic self-induced
transparency. Another scheme of pulse acceleration could
be based on using a plane target with its density decreasing
from front to back. The SASL regime is challenging for
low-density material applications and will require produc-
tion of lightweight foils with fully variable and controllable
parameters. Such foils should typically have a multimicron
thickness that makes them more robust in laser acceleration
experiments in contrast to nanoscale solid dense foils,
which require an extremely clean pulse shape. Finally, we
note that our simulations with low-density targets have
demonstrated more than a twofold increase of proton
energy compared with the case of solid dense foils of
optimal submicron thickness [24].
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