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A near-field thermal Hall effect (i.e., Righi-Leduc effect) in networks of magneto-optical particles placed
in a constant magnetic field is predicted. This many-body effect is related to a symmetry breaking in the
system induced by the magnetic field, which gives rise to preferential channels for the heat transport by
near-field interaction thanks to the particle’s anisotropy tuning.
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The Righi-Leduc effect [1] is the thermal analog of the
classical Hall effect [2]. It consists in the appearance of a
heat flux transversally to a heat current induced by a
temperature gradient inside a solid under the presence of a
magnetic field. Like the Hall effect, it is due to the curvature
of the carrier’s trajectories through the magnetic field. At
the macroscopic scale, this effect is related to a symmetry
breaking in the transport equations due to the presence of
an external magnetic field. At the microscale numerous
mechanisms can be responsible for this effect. In semi-
conductors, metals, or high-Tc superconductors, it is the
Lorentz force acting on the free electrons which is
responsible for a transversal heat current. In ferromagnetic
materials, magnon (spin wave) [3–5] currents have been
shown to be the source of the thermal Hall effect. Recently,
a phonon mediated thermal Hall effect [6,7] has been
highlighted in neutral objects of zero electrical charge. But,
so far, no magnetotransverse effect has been predicted for
the photon contribution of the thermal conductivity. In this
Letter, we investigate the near-field heat exchanges in a
four-terminal system composed by magneto-optical par-
ticles under the action of a constant magnetic field, and we
demonstrate the existence of a Hall flux in the direction
perpendicular to the primary temperature gradient, which is
due to a breakdown of the symmetry in the near-field
interactions.
To start, we consider the system sketched in Fig. 1. It

consists of four identical spherical particles made with a
magneto-optical material which is arranged in a four-
terminal junction. Those particles can exchange electro-
magnetic energy between them and with the surrounding
medium which can be assimilated to a bosonic field at an
ambient temperature Ta. By connecting the two particles
along the x axis to two heat baths at two different
temperatures, a heat flux flows through the system between
these two particles. Without an external magnetic field, all
particles are isotropic, so that the two other unthermostated
particles have, for symmetry reasons, the same equilibrium
temperatures; therefore, they do not exchange a heat flux
through the network. On the contrary, when a magnetic

field is applied orthogonally to the particle’s network, the
particles become anisotropic so that the symmetry of the
system is broken (Fig. 1). As we will see hereafter, when
the steady state regime is reached, the two unthermostated
particles display two different temperatures. Therefore, a
heat flux propagates transversally to the primary applied
temperature gradient.
Using the Landauer formalism for N-body systems

[8–13], the heat flux exchanged between the ith and the
jth particles in the network reads

φij ¼
Z

∞

0

dω
2π

½Θðω; TiÞ − Θðω; TjÞ�T i;jðωÞ; ð1Þ

where Θðω; TÞ ¼ ℏω=½eðℏω=kBTÞ − 1� is the mean energy
of a harmonic oscillator in thermal equilibrium at a

FIG. 1. Sketch of the four terminal junction made with
magneto-optical nanoparticles used to demonstrate the existence
of a photon Hall effect under the action of an external magnetic
field H when the left and right particles are held at two different
temperatures. (a) If H ¼ 0, the particles are optically isotropes so
that the system is thermally symmetric (i.e., T3 ¼ T4) and the
Hall flux φH ≡ φy is null. (b) If a magnetic field is applied in the z
direction, the particles become biaxial breaking the system
symmetry [the optical axes are two complex valued vectors V1 ¼
ði; 1Þ and V2 ¼ ð−i; 1Þ, the eigenvectors of the permittivity
tensor]; a temperature gradient is generated in the y direction
giving rise to a nonnull Hall flux. The black arrows illustrate the
particles anisotropy.
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temperature T, and T i;jðωÞ denotes the transmission
coefficient, at the frequency ω, between the two particles.
When the particles are small enough compared with their
thermal wavelength λTi

¼ cℏ=ðkBTiÞ (c is the vacuum light
velocity, 2πℏ is Planck’s constant, and kB is Boltzmann’s
constant), they can be modeled by simple radiating elec-
trical dipoles. In this case, the transmission coefficient is
defined as [11]

T i;jðωÞ ¼ 2ImTr½AijIm ¯̄χjC
†
ij�; ð2Þ

where ¯̄χj, Aij, and Cij are the susceptibility tensor plus two
matrices, which read [11] in terms of a free space Green
tensor ¯̄G0

ij¼½expðikrijÞ=4πrij�f½1þðikrij−1Þ=ðk2r2ijÞ�1þ
½ð3−3ikrij−k2r2ijÞ=ðk2r2ijÞ�r̂ij⊗ r̂ijg (r̂ij ≡ rij=rij, rij is
the vector linking the center of dipoles i and j, while rij ¼
jrijj and 1 stands for the unit dyadic tensor) and of a
polarizabilities matrix α̂ ¼ diagð ¯̄α1;…; ¯̄αNÞ ( ¯̄αi being the
polarizability tensor associated with the ith object)

¯̄χj ¼ ¯̄αj − i
k3

6π
¯̄αj ¯̄α

†
j ; ð3Þ

Aij ¼ ½1 − k2α̂B�−1ij ; ð4Þ

with Bij ¼ ð1 − δijÞ ¯̄G0
ij and

Cij ¼ k2 ¯̄G0
ikAkj: ð5Þ

If the temperature difference between the two thermostated
particles is small (i.e., Ti ¼ Teq þ ΔTi, Teq being the
temperature of a cold reservoir) then we can treat the
system in a linear regime. In this case, the heat flux received
by each particle can be written as

ϕi ¼
X
j≠i

φij ¼
X
j≠i

GijðTj − TiÞ; ð6Þ

where

Gij ¼
∂φij

∂T
����
T¼Teq

¼
Z

∞

0

dω
2π

∂Θ
∂T T i;jðωÞ ð7Þ

is the thermal exchange conductance between the ith and
the jth particles at temperature Teq. In steady state, the net
power received by each particle vanishes. By neglecting the
far-field interactions with the surrounding field [the power
φi↔a ¼ C̄abs;iσBðT4

a − T4
i Þ exchanged in the far field with

the environment, where C̄abs;i is the thermally averaged
dressed absorption cross section of the ith particle and σB is
the Stefan-Boltzmann constant that is negligeable in the
front of near-field interactions [14]] the energy balance
equation reads

Pi;bi þ
X
j≠i

GijðTj − TiÞ ¼ 0; i ¼ 1; 2 ð8Þ

X
j≠i

GijðTj − TiÞ ¼ 0; i ¼ 3; 4; ð9Þ

where Pi;bi is the power exchanged between the thermo-
stated particle i and the ith heat bath. By solving the two
last equations with respect to the unknown temperatures T3

and T4, we get

T3 ¼
1

ϒ

��
G31

X
j≠4

G4j þG34G41

�
T1

þ
�
G32

X
j≠4

G4j þG34G42

�
T2

�
; ð10Þ

T4 ¼
1

ϒ

��
G41

X
j≠3

G3j þG43G31

�
T1

þ
�
G42

X
j≠3

G3j þG43G32

�
T2

�
; ð11Þ

where ϒ ¼ P
j≠3G3j

P
j≠4G4j −G34G43. From expres-

sions (10) and (11) and using the reciprocity of heat
exchanges (i.e., Gij ¼ Gji), we find the condition to fulfill
in order to get a null Hall flux (i.e., T3 ¼ T4)

G31G42 −G41G32 ¼ 0: ð12Þ

Thus, by breaking this symmetry condition into the system
applying, for instance, an external magnetic field, a temper-
ature difference must appear between the upper and lower
particles giving rise to a thermal Hall flux.
The magnitude of this Hall effect can be evaluated using

the relative Hall temperature difference

R ¼ T3 − T4

T1 − T2

: ð13Þ

In a linear response regime, this expression reads from
relations (10) and (11)

R ¼ G31G42 −G41G32

ϒ
: ð14Þ

As for the Hall conductance, it is defined from the ratio
of the Hall flux

φH ¼
X
i≠4

φ4i −
X
i≠3

φ3i ð15Þ

over the primary temperature gradient T1 − T2 when T1 →
T2. After a straighforward calculation [15], this leads to

GH ¼ ðG42 −G41ÞTeq
− RðG14 þ G24 þ 2G34ÞTeq

; ð16Þ
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where the symbol ðÞT means that the conductances are
calculated at a temperature T. According to the conditions
(12), when R ¼ 0, we verify that the Hall conductance
vanishes.
Let us now consider a concrete situation by studying a

four terminal junction made with four identical InSb
spherical particles of radius r placed at the vertices of a
square as sketched in Fig. 1. When a magnetic field is
applied in the direction parallel to the z axis, the permit-
tivity tensor of InSb particles takes the following form
[19,20]

¯̄ε ¼

0
B@

ε1 −iε2 0

iε2 ε1 0

0 0 ε3

1
CA ð17Þ

with

ε1ðHÞ ¼ ε∞

�
1þ ω2

L − ω2
T

ω2
T − ω2 − iΓω

þ ω2
pðωþ iγÞ

ω½ω2
c − ðωþ iγÞ2�

�
;

ð18Þ

ε2ðHÞ ¼ ε∞ω
2
pωc

ω½ðωþ iγÞ2 − ω2
c�
; ð19Þ

ε3 ¼ ε∞

�
1þ ω2

L − ω2
T

ω2
T − ω2 − iΓω

−
ω2
p

ωðωþ iγÞ
�
: ð20Þ

Here, ε∞ ¼ 15.7 is the infinite-frequency dielectric con-
stant, ωL ¼ 3.62 × 1013 rad · s−1 is the longitudinal optical
phonon frequency, ωT ¼ 3.39 × 1013 rad · s−1 is the trans-
verse optical phonon frequency, ωp ¼ ðne2=m�ε0ε∞Þ1=2 is
the plasma frequency of free carriers of density n ¼ 1.07 ×
1017 cm−3 and effective mass m� ¼ 1.99 × 10−32 kg, Γ ¼
5.65 × 1011 rad · s−1 is the phonon damping constant, γ ¼
3.39 × 1012 rad · s−1 is the free carrier damping constant,
and ωc ¼ eH=m� is the cyclotron frequency. Thus, the
polarizability tensor for a spherical particles can be
described, including the radiative corrections, by the
following anisotropic polarizability [21]

¯̄αiðωÞ ¼
�
¯̄1 − i

k3

6π
¯̄α0i

�
−1

¯̄α0i; ð21Þ

where ¯̄α0i denotes the quasistatic polarizability of the ith
particle which reads for spheres made with magneto-optical
materials and which are embedded inside an isotropic host
of permittivity εh

¯̄α0iðωÞ ¼ 4πr3ð ¯̄ε − εh
¯̄1Þð ¯̄εþ 2εh

¯̄1Þ−1: ð22Þ
As shown in the Supplemental Material [15], the particles
polarizability becomes strongly anisotropic in the presence
of a magnetic field. It is also shown, for particles smaller

than the wavelength, that the contribution of magnetic
moments can be neglected in front of electric contributions
in the dissipation process.
In Fig. 2(a), we show the relative Hall temperature

difference Rwith respect to the magnitude H of a magnetic
field both in the near-field and far-field regimes when the
particles are embedded in a vacuum (i.e., ϵh ¼ 1). For any
separation distance, when the magnetic field is zero, all
particles are isotropic so that the system is symmetric and,

FIG. 2. (a) Relative Hall temperature difference R vs the
magnetic field H in a four-terminal square junction of InSb
particles of r ¼ 100 nm radius at Teq ¼ 300 K. The separation
distance d12 (from edge to edge) is 3r; 50r (near-field), 200r (far-
field), and 100r (intermediate regime). (b) Thermal exchange
conductances G12, G13, G14, G34, and Hall conductance GH at
Teq ¼ 300 K with respect to the magnetic field intensity when
d12 ¼ d34 ¼ 3r. (a) Asymmetry factors of conductances at
Teq ¼ 300 K when d12 ¼ 3r.
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as expected, R ¼ 0. On the contrary, for a nonnull magnetic
field, the symmetry of a system is broken and a Hall flux
appears. The results plotted in Fig. 2(a) show that, in a near-
field regime, R keeps the same sign whatever the magnitude
of the magnetic field. On the contrary, in a far-field regime,
we see that the sign of R can change with the magnitude of
a magnetic field. Since, the optical properties of particles
are the same for both regimes of interaction, this difference
of behavior comes from the spatial variation of the electric
field itself radiated by each particle. Under the action of a
weak magnetic field, the spatial distribution of an electric
field radiated by the particles leads to a strong dissipation of
energy in the lower particle (particle 3) so that a Hall flux
flows in the direction of a positives y. On the other hand, for
strong magnetic fields of a magnitude larger than about
H ¼ 5T, it is the upper particle (particle 4) which is over
excited, and the Hall flux goes in the opposite direction.
However, as shown in Fig. 2(a), in the far-field regime, the
difference of temperature between particles 3 and 4 is
generally much smaller in the far-field than in the near-field
regime for a weak field. This comes from the efficiency of
heat exchanges in the near field because of the presence of
surface waves. Hence, as d12 ¼ 3r, the Hall temperature
difference is approximately equal to 28% of the primary
temperature gradient when H ¼ 3T while it is equal to
about 3% in the far-field regime. Because of this, hereafter
we focus exclusively our attention on the near-field regime.
To go further in the thermal Hall effect analysis, let us

examine now the variation of thermal conductances with the
magnitude of a magnetic field. For a low field, we observe
thatG13 andG14 are notably different. This difference gives
rise to a preferential channel for heat exchanges through the
network. AroundH ¼ 6T, the asymmetry inside the system
becomes maximal as shown in Fig. 2(c) so that R becomes
maximal as well. When G13 > G14, a larger amount of
energy is transmitted from the first (hot) particle to the third
particle than from the first particle to the fourth. Therefore,
the third particle becomes hotter than the fourth one and
accordingly, a Hall flux flows toward the latter (i.e., R > 0).
To explain the near-field coupling between the particles, let
us focus now our attention on the optical properties of
particles. According to the Clausius-Mosotti-like relation
(22), the particle resonances, which correspond to localized
surface polaritons, are the solutions of the following
transcendental equations

ε3ðωÞ þ 2εh ¼ 0 ð23Þ
and

½ε1ðωÞ þ 2εh�2 − ε22ðωÞ ¼ 0: ð24Þ

These resonances are plotted in Fig. 3 with respect to the
magnitude of magnetic field. We clearly see the presence of
three different branches (bright areas). The vertical branch
is independent on the magnetic field. This branch is related

to the resonance which is the solution of Eq. (23), and it
corresponds to the presence of a surface phonon polariton
(SPhP) at ω ∼ 3.5 × 1013 rad · s−1. The two others
branches are solutions of Eq. (24). Contrary to the first
resonance, these resonances depend on the magnetic field
and are of a plasmonic nature. When the magnitude of a
magnetic field becomes sufficiently large, these plasmonic
resonances get away from theWien’s frequency so that they
do not contribute anymore to heat exchanges. On the other
hand, for weak magnetic fields, these resonances give rise
to supplementary channels for heat exchanges, which
superimpose to the channel associated with SPhP.
Moreover, the contribution of the high frequency plasmonic
channel becomes more and more important as its frequency
comes closer to the Wien’s frequency. The optimal transfer
occurs for a magnetic field of a magnitude H ¼ 6T. This
situation corresponds precisely to the condition where the
Hall effect is maximal.
If an experimental observation of the photon thermal Hall

effect seems to be out of reach with nanoparticle networks, a
direct measurement of the Hall temperature difference with
measurements of electrical resistance variations inmagneto-
optical nanowires networks should be feasible. A similar
experiment has been reported recently [22] to measure, with
a very high accuracy, the near-field heat exchanges between
two nanobeams. Besides the experimental observation of
this effect, some potential applications of the photon thermal
Hall effect may be considered. As for the classical Hall
sensor, a many body junction made with magneto-optical
elements is a natural building block tomake a purely thermal
magnetic field detection. Indeed, in a linear regime, the Hall
flux φH ¼ GHRΔT (ΔT being the primary temperature
gradient) is directly proportional through the Hall conduct-
ance to the magnetic field. Another application is the use in
nanoscale heat engines of the thermal Hall effect in the
presence of an acmagnetic field to modulate the heat flow in
multiple directions. Of course, the upper frequency for such

FIG. 3. Resonance conditions of InSb particles in vacuum (i.e.,
ϵh ¼ 1). (a) Plot of lnðjðϵ3 þ 2ϵhÞ½ðϵ1 þ 2ϵhÞ2 − ϵ22�j−1Þ in the
ðω; HÞ plane. The dashed line corresponds to the Planck function
(arbitrary unit) at Teq ¼ 300 K.
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a modulation is limited by the thermal relaxation of the Hall
cell. But, with nanocomponents, this frequency is of the
order of the inverse of a phonon relaxation time τph∼10−12 s.
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