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Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used
to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the
lowest-lying JP ¼ 1=2− nucleon excitation. In the initial analysis, the phenomenological parameters of the
Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a
prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on
volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional
analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination
of resonance properties from lattice QCD itself. Finally, the role and importance of various components of
the Hamiltonian model are examined.
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Lattice QCD has proven remarkably successful in
reproducing the masses and many other properties of the
octet baryons, which are stable under the strong interaction.
In our ongoing quest to understand the structure of
hadronic systems in terms of QCD, the focus is now
shifting to excited states. Perhaps the greatest challenge is
that all states studied on a Euclidean space-time lattice are
stable eigenstates of the QCD Hamiltonian, subject to
periodic spatial boundary conditions. In contrast, the
resonant states revealed in experiments are neither stable
nor are they eigenstates of the QCD Hamiltonian. Rather,
they are often extremely short-lived, with multiple decay
modes. Clearly, one faces an enormous challenge when one
aims to use lattice QCD to study these states.
One powerful technique, introduced by Lüscher [1,2],

which has been widely used by the community, does
provide a robust link between the discrete energy levels
observed in lattice QCD and the scattering phase shifts
extracted from experiment. This method presents technical
complications when the resonance under study can decay
through more than one open channel. These complications
can be overcome and the resulting formalism has been
successfully applied in the coupled ππ and KK̄ system [3].
On the other hand, several groups have been led to explore
an alternative approach, which we label Hamiltonian
effective field theory (HEFT).
HEFT enables a quantitative examination of experimen-

tal observations such as resonance positions, partial decay
widths, scattering phase shifts, and inelasticities in terms of
a model built from hadronic degrees of freedom and their
interactions. While formulated in infinite volume, such
models have recently been applied to the analysis of the
hadronic excitation spectra observed in a small number of

finite-volume lattice QCD calculations [4,5], namely, the Δ
resonance [4] and the Λð1405Þ [5]. The former is a classical
case where a three-quark state is dressed by coupling to the
open πN channel, while the latter is far more complex and
illustrates some of the power of HEFT. In concert with a
lattice study of the individual quark flavor contributions to
the magnetic form factor of the baryon, the application of
HEFT led to a deeper understanding of the nature of this
resonance which has been mysterious for 50 years. That
study strongly suggested that the Λð1405Þ does not have a
significant three-quark component in its wave function;
rather, it is appropriately viewed as a K̄N bound state.
In this Letter we examine the nature of the first negative

parity excitation of the nucleon, the JP ¼ 1=2−N�ð1535Þ.
This state has been the subject of much speculation in the
literature [6–9], since it lies above the first positive parity
nucleon excited state (the Roper resonance at 1440 MeV),
unlike the expectation in the phenomenologically very
successful harmonic oscillator model. There have also
been suggestions that there may be a significant strange
quark component in this resonance, so it could be viewed as
a pentaquark. Such questions are central to the modern
study of resonances, and with its S-wave coupling to both
πN and ηN channels, this is an ideal case for study using
HEFT to analyze modern lattice data. Our study supports
the interpretation of the N�ð1535Þ as primarily a three-
quark excitation, with couplings to five-quark components.
The states most likely associated with the resonance have a
probability of about 50% to contain the bare baryon, at the
physical pion mass, in boxes with L≃ 2, 3 fm.
The HEFT used here introduces a bare state N�

0, which
may be thought of as a three-quark state that would be
stable in the absence of coupling to the πN and ηN
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channels. We do not consider the corrections from Nππ
states, which would add significant technical complica-
tions, because the branching ratio in the case of the
Nð1535Þ is only a few percent [10]. The corresponding
Hamiltonian has two parts, a noninteracting or bare
Hamiltonian H0 and an interacting Hamiltonian HI . In
the center-of-mass system, the noninteracting part is

H0 ¼ jN�
0im0hN�

0j þ
X

α

Z
d~kjαð~kÞiωαðkÞhαð~kÞj: ð1Þ

Here, m0 is the mass of N�
0, while jαð~kÞi denotes either the

πN or ηN channel and ωαðkÞ is the corresponding energy,

ωαðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α1 þ ~k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α2 þ ~k2
q

. Here, mα1 and mα2 are
masses of the meson and baryon, respectively.
Following Refs. [11–13], where there was an extensive

study of scattering data involving nucleon resonances up to
1.8 GeV, the interaction Hamiltonian can be divided into
two parts, HI ¼ gþ v. Here, g describes the interaction
between the bare state N�

0 and the multiparticle channels
that dress it:

g ¼
X

α

Z
d~kfjαð~kÞiG†

αðkÞhN�
0j þ jN�

0iGαðkÞhαð~kÞjg: ð2Þ

Here, we take G2
iNðkÞ ¼ ð3g2N�

0
iN=4π

2f2ÞωiðkÞu2ðkÞ, with
i ¼ π or η and ωXðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

X

p
. The pion decay

constant is f ¼ 92.4 MeV, and the regulator is taken to
be a dipole with mass parameter Λ ¼ 0.8 GeV. GαðkÞ
corresponds to the Lagrangian iN̄�

0γ
μ∂μπN þ H:c:, in the

limit where the baryons are treated nonrelativistically and a
dipole regulator is used to render the theory finite.
The second part of the interaction Hamiltonian is purely

phenomenological. It is taken to be separable, with form
factors chosen to reproduce the low-energy scattering data,
well below the energy region where the resonance

dominates. It describes the transitions between meson-
baryon state jαð~kÞi and meson-baryon state jβð ~k0Þi:

v ¼
X

α;β

Z
d~kd~k0jαð~kÞiVS

α;βðk; k0Þhβð~k0Þj: ð3Þ

For example, the separable form for the interaction in the
πN channel is

VS
πN;πNðk; k0Þ ¼

3gSπN ~uðkÞ ~uðk0Þ
4π2f2

: ð4Þ

In order to fit the low-energy experimental data well, it was
found that the form factors needed enhancement at low
momentum and the purely ad hoc form ~uðkÞ ¼ uðkÞ(mπ þ
ωπðkÞ)=ωπðkÞ works very well, with uðkÞ the same
function used in Eq. (2). Of course, when exploring the
fit to lattice data away from the physical pion mass, the
value of mπ appearing in ~u is not varied.
The scattering T matrix is obtained from the relativistic

Lippmann-Schwinger equation. The coupling parameters,
gN�

0
πN , gN�

0
ηN , and gSπN , and the bare massm0 are determined

by fitting the empirical phase shifts and inelasticities for πN
scattering in the J ¼ 1=2− channel, with guidance from the
partial decay widths of the N�ð1535Þ resonance. Varying
these four parameters and fitting the 56 data points provides
the fit illustrated in Fig. 1 with χ2DOF ¼ 6.8 and parameters:
gSπN ¼ −0.0608� 0.0004, gN�

0
πN¼0.186�0.006, gN�

0
ηN ¼

0.185� 0.017, andm0 ¼ 1601� 14 MeV. This fit yields a
pole at 1531� 29 − i88� 2 MeV on the unphysical
energy sheet for πN and ηN, where the error of the pole
only counts that of m0. This is in excellent agreement with
the Particle Data Group [10] estimate of 1510� 20−
i85� 40.
With the Hamiltonian model and associated parameters

constrained by experimental data, we can now calculate
the JP ¼ 1=2− nucleon spectrum in the finite-volume

FIG. 1. Experimental data [14] for the phase shift (left) and inelasticity (right) for πN scattering with JP ¼ 1=2− are fit by the
Hamiltonian model.
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considered in lattice QCD calculations. In a box with length
L, the momentum a particle can carry in any one dimension
is constrained to integer multiples of the lowest nontrivial
momentum 2π=L. In three dimensions, it is convenient to
introduce the integer n ¼ n2x þ n2y þ n2z, such that the
momenta available on the lattice are described by
kn ¼ 2π

ffiffiffi
n

p
=L. Full details of the translation of a

Hamiltonian of the form given above into a Hamiltonian
matrix on a finite spatial volume may be found in Ref. [4].
It has proven extremely useful in unravelling pieces of

the strong interaction puzzle to move beyond the physical
quark masses to the realm where they become larger. To
explore this regime we allow the bare mass m0 to vary
linearly with quark mass, so that (because m2

π ∼mq)
m0ðm2

πÞ ¼ m0jphys þ α0ðm2
π −m2

πjphysÞ. In the first in-
stance, α0 is estimated through a single parameter fit to
current lattice QCD results for the JP ¼ 1=2− nucleon
spectrum. The pion mass dependence of the ground state
nucleon mass, mNðm2

πÞ, is obtained via linear interpolation
between the lattice QCD results on the same size lattice.
The mass of the η meson is related to the pion mass
via m2

ηðm2
πÞ ¼ m2

ηjphys þ 1
3
ðm2

π −m2
πjphysÞ.

The left-hand plot of Fig. 2 illustrates results from the
Hadron Spectrum Collaboration [15,16] (denoted JLab)
and Lang and Verduci [17]. These precise results are
obtained on the smaller of the two lattice volumes con-
sidered herein, with length L≃ 1.98 fm. The right-hand
plot illustrates lattice QCD results for lattice volumes with
length L ≈ 2.90 fm. Recent results from the Centre for the
Subatomic Structure of Matter (CSSM) lattice group in
Adelaide [18–21] are shown, along with the Cyprus
Collaboration’s results, obtained using the Athens model
independent analysis acheme [22]. Both groups provide
results for light pion masses ≃160 MeV. The two lowest-
lying odd-parity states from lattice QCD have an energy
similar to the noninteracting S-wave πN scattering thresh-
old. CSSM reports two more low-lying states typically split

by 100 MeV. The Cyprus Collaboration reports one state in
this regime with an energy consistent with the lower of the
two CSSM states.
The precision of the low-lying state observed by Lang

and Verduci on the 2 fm lattice highlights the different
method employed in their analysis. There the low-lying
scattering state was obtained by creating a meson-baryon
source in which the momentum of each hadron is projected
to zero. In all other cases, the hadrons have been created
using conventional smeared-source operators. To obtain the
low-lying state next to the noninteracting S-wave πN
scattering threshold, the CSSM Collaboration used five-
quark operators. All other states have been obtained
through the consideration of three-quark operators.
In solving the matrix Hamiltonian, the noninteracting

basis states mix to form eigenstates of the Hamiltonian.
These eigenstate energies are illustrated in Fig. 2 for lattice
lengths L≃ 1.98 (left) and 2.90 fm (right). Only one model
parameter has been adjusted in fitting 23 lattice energy
eigenstates over three levels on two volumes. The param-
eter α0 ¼ 0.96� 0.06 GeV−1, describing the quark-mass
dependence of the bare N� mass, was obtained from a
simultaneous fit of these data providing a χ2DOF ¼ 1.7. Of
particular note is the excellent agreement between the high-
precision first state reported by Lang and Verduci [17] and
the Hamiltonian model.
Because the majority of the states observed in the lattice

QCD simulations have their origin in three-quark operators,
we examine the eigenvectors of the Hamiltonian states to
identify states formed with a large component of the bare
basis state. Under the assumption that the three-quark
operators couple most strongly to this bare-state compo-
nent, one can then identify states in the matrix Hamiltonian
spectrum most likely associated with the states observed in
the lattice QCD simulations. In Fig. 2 we have indicated the
strength of the bare-state component through different line
types and colors. In both figures, the lattice QCD results
expected to be associated with resonant states are indeed

FIG. 2. The pion mass dependence of the L≃ 1.98 fm (left) and L≃ 2.90 fm (right) finite-volume energy eigenstates. The different
line types and colors indicate the strength of the bare basis state in the Hamiltonian model eigenvector.
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described well by the Hamiltonian model. The Hamiltonian
states dominated by the bare-state component agree with
the lattice results at the one-standard-deviation level.
On comparing the Hamiltonian spectra presented in

Fig. 2, one observes a significant dependence on the
volume of the lattice considered. The additional complexity
of the spectrum encountered on larger lattice volumes is
also apparent in the right-hand plot of Fig. 2. Here,
additional meson-baryon dominated states appear next to
the eigenstates seen on the lattice. Future simulations will
include new meson-baryon operators to capture these states
in the lattice correlation-matrix-based variational analyses.
The lowest-lying state on both lattice volumes is a πN

scattering state at light quark masses, but this evolves into a
state dominated by the bare-mass component at heavy
quark masses. Here, as the mass of the multiparticle state
becomes very large, the lowest-lying state is composed of a
bare N� state dressed by πN and ηN contributions. The
third eigenstate on the L≃ 2.90 fm lattice which appears
between the two resonantlike lattice states is seen to be
predominately an ηN scattering state.
Next, we turn to a more traditional analysis, where the

aim is to extract information on the resonance of interest. In
this case, the low-energy coefficients of the model, the bare
mass m0 and associated slope α0, are both constrained by
the lattice QCD results. After extracting these parameters
from the fit to lattice data, we take the infinite volume limit
and calculate the pole position. In optimizing these param-
eters, the Hamiltonian eigenstates dominated by bare-state
contributions are brought as close as possible to the
resonantlike lattice QCD results. Similarly, the first state
of the Hamiltonian model is brought as close as possible to
the lowest-lying scattering states observed on the lattice. A
standard χ2 measure weighted by the lattice QCD energy
uncertainties is used. The resultant fit is very good, with
χ2DOF ¼ 1.7. The main change is a slight increase in the bare
mass to better accommodate the lattice QCD data at
moderate pion masses. Using a bootstrap analysis to
determine the standard errors from the percentiles
of the distributions, we find m0 ¼ 1644þ34

−30 MeV and
α0 ¼ 0.77þ0.15

−0.16 GeV−1, with the position of the pole in
the complex plane at 1602� 48 − i88.6þ0.7

−2.8 MeV. The
pole position lies just outside of a 1σ agreement
with the Particle Data Group estimate of 1510� 20−
i85� 40.
The previous analysis included a background separable

interactionwhich hadbeen constrainedby experimental data.
Next, we explore the importance of such terms by dropping
them and using only the information provided by the
lattice calculation. This is necessary, for example, when
there is insufficient experimental information on its
properties, especially its couplings to hadronic channels.
In particular, we fit the lattice QCD results by adjusting
the two low-energy coefficients,m0 andα0, but this timewith
the separable potential terms discarded. Theoptimal fit yields

a rather high χ2DOF ¼ 4.6, largely because of the significant
discrepancy between the Hamiltonian model prediction for
the lowest-lying πN scattering state on the L≃ 1.98 fm
lattice and the lattice QCD result of Lang and Verduci [17].
The majority of the resonantlike lattice results are still
described well by the Hamiltonian model. Using a
bootstrap analysis to obtain the uncertainties, the optimal
parameters are m0¼1623þ33

−41MeV, α0 ¼ 0.85þ0.17
−0.17 GeV−1,

ReðpoleÞ ¼ 1563þ52
−80 MeV, −ImðpoleÞ ¼ 89.2þ0.2

−4.2 MeV.
This pole position compares favorably with the Particle
Data Group’s estimate of 1510� 20 − i85� 40. However,
the discrepancies highlighted and the associated unaccept-
able χ2DOF ¼ 4.6 reveals that the separable potential terms
are vital to an accurate description of the lattice QCD
results.
In summary, we have used Hamiltonian effective field

theory (HEFT) to study the low-lying JP ¼ 1=2− excitations
of the nucleon in both the finite volume of lattice QCD
and the infinite volume of nature. We have drawn on
experimental data for the lowest-lying JP ¼ 1=2− nucleon
resonance, the N�ð1535Þ, and used HEFT to predict the
positions of the finite-volume energy levels to be observed in
lattice QCD simulations in volumes of ∼2 and ∼3 fm.
The agreement between the HEFT predictions and lattice

QCD results is excellent and admits a more conventional
analysis where the low-energy coefficients are constrained
by lattice QCD results, enabling a determination of
resonance properties from lattice QCD. We used lattice
QCD results from two different volumes to determine the
pole position of the N�ð1535Þ. We find the pole position
1602� 48 − i88.6þ0.7

−2.8 MeV, which lies just outside of 1σ
agreement with the Particle Data Group estimate
of 1510� 20 − i85� 40.
We also examined the role of πN separable potential

couplings and found them to be essential in accurately
describing the position of the lowest-lying scattering state
in the finite volume of the lattice. The lattice length
dependence of the spectrum shows a rich structure, and
it will be interesting to examine this in detail in future
lattice QCD calculations.
Finally, the success of this approach leads us to consider

its application to other JP baryon channels. The 1=2þ
channel of the nucleon is of particular interest where
evidence of the Roper resonance in lattice QCD inves-
tigations is providing a fascinating puzzle [23] waiting to
be solved. Application of the successful formalism pre-
sented herein will be of benefit in unraveling the mystery
surrounding the Roper resonance in QCD.
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