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Most treatments of neutrino flavor evolution, above a surface of the last scattering, take identical angular
distributions on this surface for the different initial (unmixed) flavors, and for particles and antiparticles.
Differences in these distributions must be present, as a result of the species-dependent scattering cross
sections lower in the star. These lead to a new set of nonlinear equations, unstable even at the initial surface
with respect to perturbations that break all-over spherical symmetry. There could be important
consequences for explosion dynamics as well as for the neutrino pulse in the outer regions.
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The study of collective neutrino interactions in the
outskirts of the supernova explosion has generated an
explosion of publications [1–23]. These collective effects
come about as a consequence of the standard model
neutrino-neutrino coupling, and change the correlations
between neutrino flavor and neutrino energy. In doing so
they may profoundly affect the neutron-proton ratio, and
R-process rates in layers far above that of the last scattering.
In these studies what is added to the observationally well-

established single ν oscillation and matter effects can be
described as totally forward, standard model, interactions

among the ν, viz., νð~qÞ þ νð~kÞ → νð~qÞ þ νð~kÞ. Nothing
except ν-flavor enters into the process. In principle, therefore,
one can follow outward each neutrino, continuously updat-
ing the flavor density matrix of each to take into account the
interactions with all of the others. Consideration of this
process, as codified in a Liouville-type equation [1], has led
to a number of large-scale numerical calculations, e.g.,
Refs. [3–12], in which the underlying assumptions have
been named the “ν-bulb” model.
These calculations begin at the surface of a neutrino

sphere, a loosely-defined surface beyond which scattering
is considered ignorable, and they assume spherically
symmetrical neutrino flows from below. On this ν surface
the ν angular distributions are taken as uniform, with no
variation in angle over the outward directions, but with no
inward bound ν’s. The initial states for these neutrinos are
taken as “flavor diagonal,” that is with no mixing of νe, νx
or of νe, νx. Here, νx is that combination νμ and ντ that is
best suited to two-neutrino simulations.
There have been a number of recent works [18–27]

devoted to the possibility of “azimuthal” or “multiangle”
instabilities in the above picture, that is, that some small
perturbation of the ν flavor density matrix that breaks the
spherical symmetry of system can grow exponentially
beyond some radius of onset. In these examples the insta-
bilities would occur at distances of 100 km or more from the
“ν surface,” a sphere of last scattering that is at a radius of
about 15 km.. By contrast, we find instability at or very near
this surface. There is a reason for this difference: In some

imprecise way it is already known that the onset of a
multiangle instability, stemming from the ν-ν interaction,
requires a state in which angular distributions are flavor
dependent [18,19], and in the references cited above these
develop through joint action of the ν-ν interaction and
neutrino oscillation terms. The latter are greatly suppressed
by the interaction with electrons until the ν’s are out to the
100 km region. In contrast, we begin at the ν surface with a
physically based flavor dependence in the angular distribu-
tion that makes the system unstable to the tiniest seed from
oscillation effects.
Some features of our approach are (i) we follow custom

by taking distributions on initial surfaces to be angle
independent in the outgoing hemisphere. But we take
the radii of these surfaces to depend on “flavor,” which
in our terminology will distinguish fνe; νe; νx; νxg. This is
motivated by the fact that the average last-scattering radius
rνe , for νe, is considerably larger than that for νe which, in
turn, should be larger than that for νx, νx. (ii) Then we begin
our real calculation (still with flavor-diagonal distributions)
at an initial distance rνe . The other three favors on this
surface have narrower angular cones than does νe, just from
the effects of free streaming from their lower surfaces of
origin. (iii) The distributions on an initial surface that are
produced from the above are perfectly spherically sym-
metric in the sense that ν angular distributions, fðθÞ, where
θ is the angle with respect to the local normal, are the same
at all points of the sphere. Testing the nonlinear evolution
equations for stability against nonspherically symmetric
perturbations in the flavor density matrices, we find
instability at the initial surface at r0 (with r0 > rνe) for
an interesting range of parameter values. (iv). The system
described above still has perfect spherical symmetry in its
flavor distribution and flow. The perturbations that grow, at
a rate of order GFnν as it turns out, are characterized by
having a combination of tiny flavor mixing and spherical
asymmetry. Seeds of such irregularities can come about in
many ways. We mention one that does not even require
asymmetry in the ν number flow: Neutrino oscillation terms
will give tiny flavor mixings during the propagation
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between last scattering and the starting surface of the
calculation. Irregularities in electron densities in this region
will lead to angular irregularities in the starting flavor-
density matrix, insignificant in stable cases but crucial in
unstable cases.
We begin from the Liouville equation [28,29] for time

independent flow,

n̂ ·∇~σαðr; n̂Þ ¼ 21=2ð2πÞ−3GF~σαðr; n̂Þ

×
X4

β¼1

ζβ

Z
dΩn̂0 ~σβðr; n̂0Þð1 − n̂ · n̂0Þ

þ fO&Mg; ð1Þ

where the vectors indicated by arrows and the vector
product are in ν-flavor space and n̂ is neutrino velocity
in real space. fO&Mg stands for the standard oscillation
and matter terms, linear functions of the components of ~σα,
which we drop from the development below, since they will
enter only in the preparation of the initial state for the
calculation. The index α keeps track of distinguishing
the origin of a neutrino as a pure flavor state in one of the
groups fνe; νe; νx; νxg. The set ζα ¼ f1;−1; 1;−1g puts in
minus signs for anti-ν’s inside the sum. In (1), and every-
thing that follows, the energy spectrum is irrelevant; it is
number densities that enter.
In the case of a spherically symmetric system we have

~σαðr; n̂Þ ¼ ~σαðr; r̂ · n̂Þ, whence,

½n̂ ·∇�~σαðr; r̂ · n̂Þ

¼ n̂ ·

�
r̂∂1~σαðr; r̂ · n̂Þ þ

1

r
ðn̂ − r̂½r̂ · n̂�Þ∂2~σαðr; r̂ · n̂Þ

�

¼
�
cos θ

∂
∂rþ

sin2θ
r

∂
∂ cos θ

�
~σαðr; cos θÞ

≡O~σαðr; cos θÞ; ð2Þ

where ∂1 and ∂2 are the derivatives with respect to the first
and second arguments of ~σα, the angle θ is between r and n̂,
and the last line defines the operator O. Using the r
dependent variable θR of Ref. fuller would have eliminated
the ∂=∂ cos θ term in O, but made the ν-ν interaction very
difficult to deal with when the ν-sphere radii depend on
flavor. Results the equivalent of Eq. (2) are found in the
appendix to Ref. [1]. The ~σα’s are related to the flavor-

density matrices, ~Φαðr; cos θÞ, for individual neutrinos by

~σαðr; cos θÞ ¼ σ0;αðr; cos θÞ~Φαðr; cos θÞ; ð3Þ

where σ0;αðr; cos θÞ is the total neutrino density in the
group α. We have O~σαðr; cos θÞ ¼ 0 in the absence of ν
interactions, and Oσ0;αðr; cos θÞ ¼ 0 even in the presence
of the neutrino terms, so that eq. (1) becomes,

O~Φαðr;cosθÞ
¼ 21=2ð2πÞ−3GF

~Φαðr;cosθÞ

×
X

β

ζβ

Z
dΩn̂0σ0;βðr;cosθ0Þ~Φβðr; n̂0Þð1− n̂ · n̂0Þ: ð4Þ

In the flavor diagonal initial state we have ΦðzÞ
α ¼ 1,

ΦðxÞ;ðyÞ
α ¼ 0, for all α. (Here, and in what follows, the

superscripts x, y, z stand for directions 1,2,3 in flavor space.)
The solutions to Oσ0;αðr; n̂Þ ¼ 0 are of the form σ0;α ¼
fαðr sin θÞ, where the fα’s are any functions. The “neutrino
bulb”model assumes σ0;α ¼ nαΘðr0 − r sin θÞ, independent
ofα, whereΘ is theHeaviside function andnα are the number
densities of the speciesα on a common surface.We now relax
this assumption by taking different effective neutrino surfa-
ces for the different groups of neutrinos,

σ0;α ¼ nαΘðrα − r sin θÞ; ð5Þ

where rα ¼ frνe ; rνe ; rνx ; rνxg, with rνe being the largest.
Next we reexpress the right-hand side of Eq. (4) in a series of
steps: (a) We replace cos θ by a new variable s with the
relation chosen differently for each of the four functions
Φαðr; cos θÞ, where cos θ ¼ 1 − shαðrÞ, and

hαðrÞ ¼ 1 − ½1 − ðrα=rÞ2�1=2: ð6Þ

(b) Step (a) above entails the replacement in Eq. (4),

Z
dΩn̂0σ0;βðr; cos θ0Þ~Φβðr; cos θ0Þð1 − n̂ · n̂0Þ

→ 2πnβ

Z
1

0

ds0 ~Φβðr; s0Þhβðhαsþ hβs0 − hαhβss0Þ: ð7Þ

(c) In the new variables we have

O¼½1−shαðrÞ�
∂
∂rþ

�
hαðrÞs2−2s

r
þðs2hαðrÞ−sÞh0αðrÞ

hαðrÞ
� ∂
∂s;
ð8Þ

and the evolution equation is

O~Φαðr; sÞ ¼ 2−3=2π−2GF
~Φαðr; s; Þ × ~uαðr; sÞ; ð9Þ

where

~uαðr;sÞ¼
X

β

nβζβhβ

Z
1

0

ds0½shαþ s0hβ−ss0hαhβ�~Φβðr;s0Þ:

ð10Þ

We shall examine instabilities by making the perturbation
Φ → Φþ χ, then linearizing the right-hand side of Eq. (9) in
χ. In all calculations we shall discretize in the variables s, s0
with N equal steps in the interval (0,1).
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This calculation will be local, in the sense that the
instability criteria will involve the background flavor-
density matrix only at a single point, and for that we
use the results of free-streaming from the several separate
ν surfaces. When we then look to plot the growth of
instabilities, we concern ourselves with a volume of
surrounding space small enough such that in the absence
of instabilities there would have been no appreciable
variations of Φ. From Eq. (9) we obtain

O~χα;i ¼
2−3=2GF

π2N

�
~χα;i ×

X4

β¼1

XN

j¼1

~Φβ;jwα;i;β;j

þ ~Φα;i ×
X4

β¼1

XN

j¼1

~χβ;jwα;i;β;j

�
; ð11Þ

where wα;i;β;j, with discretized angular indices ði; jÞ, is
given by

wα;i;β;j ¼ hβnβζβ½ihαN−1 þ jhβN−1 þ ijhαhβN−2�: ð12Þ

In all that follows, we take ΦðzÞ
α;i ¼ 1, ΦðxÞ;ðyÞ

α;i ¼ 0 in Eq. (11)
for all fα; ig, since the initial state is to have seen no
neutrino oscillation, giving,

OχðxÞα;i ¼
X

β;j

Mα;i;β;jχ
ðyÞ
β;j ;

OχðyÞα;i ¼ −
X

β;j

Mα;i;β;jχ
ðxÞ
β;j ; ð13Þ

where

Mα;i;β;j ¼ 2−3=2π−2GFN−1

×

�
δα;βδi;j

X

β0;j0
wα;i;β0;j0 − wα;i;β;j

�
: ð14Þ

The indices fα; ig and fβ; jg henceforth will be consoli-
dated into a and b, respectively, in a 4N dimensional space.
The eigenvalues of Ma;b, as a matrix in this space, then
indicate instability if any have an imaginary part. [It is the
x↔ − y symmetry in Eq. (13) that converts an imaginary
part here effectively into a real part for an eigenvalue of the
system as a whole.] The coupled Eqs. (13) would then have
exponentially increasing solutions, as long as an initial
value has any component in the direction of the eigenvec-
tor. The first term on the right-hand side of Eq. (14) is
diagonal and real but the second term is non-Hermitian;
nonetheless, for a wide range of parameters rα and nα that
we have considered we find stability. We believe this
stability, with respect to spherically symmetric perturba-
tions, to be a general result.
To address azimuthal instabilities at the initial surface

r ¼ rνe we take the unperturbed Φα;i as given by our
previous expressions, and, therefore, with angular
distributions that are functions of hαðrνeÞ as above. For
the linear azimuthal perturbation we take the form

ΔΦfx;yg ¼ χfx;yg½cos θÞ� cosϕ, where the azimuthal angle
ϕ is defined locally with respect to a tangent to the surface.
Now in the analogue to the final term in Eq. (11), perform-
ing the ϕ0 integral over n̂ · n̂0, we obtain,

OχðxÞα;i ¼ 2−3=2π−2N−1GF

�
χðyÞα;i

X

β;j

ΦðzÞ
β;jwα;i;β;j

þ 1

2
ΦðzÞ

α;i

X

β;j

χðyÞβ;jζβnβhβvα;ivβ;j

�
; ð15Þ

where the discretized sin θ factors from n̂ · n̂0 have the
form, vα;iðrÞ ¼ f1 − ½1 − ihαðrÞ=N�2g1=2. Following the
previous development we then recapture Eq. (13), but with
M replaced by

~Mα;i;β;j ¼ 2−3=2π−2GFN−1½wð1Þ
α;i;β;j þ wð2Þ

α;i;β;j�; ð16Þ
where

wð1Þ
α;i;β;j ¼ δα;βδi;j

X

β0;j0
wα;i;β0;j0 ; ð17Þ

and

wð2Þ
α;i;β;j ¼ 2−1ζβnβhβvα;ivβ;j: ð18Þ

We shall look for instabilities at r ¼ rνe , the outermost
neutrino surface. Their presence now depends on the values
of four parameter ratios, rνe=rνe , rνx=rνe , nνe=nνe , nνx=nνe .
Explosion calculations give rather definite values for the
number density ratios, which can be calculated from the
ratios of luminosity to average energy. The raw ratios use
the luminosities given by the simulations at a common
radius outside all neutrino spheres, but still in the region in
which neutrino oscillations matter very little. But the nα are
the densities at the respective ν surfaces; and we must
therefore apply a correction factor ½rνe=rα�2 to the raw ratios
for α ¼ νe, νx, νx.
Here we shall use the values given in Fig. 7 of Ref. [30]

in the range of times, 0.3–1 s, postbounce. We find
nνe=nνe ≈ 0.77½rνe=rνe �2, nνx=nνe ≈ 0.62½rνe=rνx �2. We have
not found as authoritative predictions for neutrino-surface
radii; a neutrino surface is an idealization that is not
contained in the data. But we believe that, given the
idealization, the opacities and the matter density profile
dictate that rνx < rνe < rνe . Within this range and for the
above values of nα ratios, we find instability in a region
approximately described as

rνe=rνe > 0.44þ 0.55rνx=rνe : ð19Þ
Thus, if the radius for νx is 80% of the radius for νe then
only the region rνe > rνe > 0.88rνe is unstable.
The instability is manifested by imaginary parts in a

single physical pair of eigenvalues, λ, λ�, of ~M converging
rapidly to a limit as we increase the subdivision number N
(say, from 16 to 128), while spurious imaginary parts in other
eigenvalues as a result of finite subdivision (noted in
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Ref. [31]) go to zero asN−1. As an example, whenwe choose
nνe ¼ 1032 cm−3 at r ¼ 15 km, and choose the ratios
rνe ¼ 0.93rνe , rνx ¼ 0.8rνe we find Im½λ� ¼ �:008GFnνe ≈
0.32 ðmeterÞ−1.
The critical region given byEq. (19) appears to be likely to

be realized at some times or places during the event. As to
“places,” we suggest a broader context for our consider-
ations. The interior simulations suggest an environment that
is locally very irregular in its parameters of density and
temperature. This will translate into very irregular neutrino
angular distributions aswell. If, as in simulations like thoseof
Refs. [3–12], the important flavor evolution takes place over
a region in r many times the size of the ν surface, these
irregularities may get averaged out, since at most points on
theway out we see a solid angle of nearly 2π of the ν surface.
But if the scale of ν flavor exchange is tens of meters instead,
then we see only a small fraction of the complete ν surface as
we sit only a little ways above it, and the averaging argument
is less sustainable. We regard our present work as a step of
interpolation between the methods and results for the usual
smoothed-out model and those of a future statistical model.
For the remainder of the paper we shift to taking the

system at time t ¼ 0 to have been established in a state of
steady symmetric flow, and we then set O ¼ d=dt, turn on
the perturbation, and follow the time development at a fixed
point, seeking the results for some period of time short
compared to r0 but long compared to the exponential rise
times. Following that path, we now examine the back-
reaction on ΦðzÞ of the growing transverse modes, χðxÞ;ðyÞ.
We use the complex representation, χa ¼ χðxÞa þ iχðyÞa in
what follows. Taking the normalized eigenvector of ~M
for the growing mode to be ξa, with eigenvalue λ, we
assume χaðtÞ ≈ gðtÞξa, for all a≡ ðα; iÞ, that is, we take
the growing mode to dominate the ðx; yÞ components. The

evolution equation (4) couples all of the ΦðzÞ
a modes to

the perturbations, χ. Defining zðtÞ ¼ ð4NÞ−1PaΦ
ðzÞ
a

(i.e., summed over all angles and all flavors), we find

_zðtÞ ¼ 2−1=2iGFnνjgðtÞj2
X

a;b

ξað½wð2Þ�†a;b − wð2Þ
a;bÞξb

¼ jgðtÞj2Im½λ�; ð20Þ

where to get the second form we first replaced wð2Þ by
wð1Þ þ wð2Þ, since wð1Þ is Hermitian, then used the fact that
ξa is an eigenvector of wð1Þ þ wð2Þ, with λ the growing
mode eigenvalue of the matrix ~M of Eq. (16). This is
supplemented with

_gðtÞ ¼ iλzðtÞgðtÞ; ð21Þ
which comes directly from Eq. (13). Using Eq. (21) we
obtain the first equality in

d
dt

½jgðtÞj2� ¼ −2Im½λ�zðtÞjgðtÞj2 ¼ −2zðtÞ_zðtÞ; ð22Þ

the second following from Eq. (20), and giving the
solution jgðtÞj2 ¼ −zðtÞ2 þ C. We take zð0Þ ¼ 1, so that
C ¼ jgð0Þj2 þ 1. Now differentiating Eq. (20) and using
the above we obtain

̈zðtÞ ¼ 2½Imλ�2½zðtÞ2 − ð1þ jgð0Þj2Þ�zðtÞ: ð23Þ

The parameter jgð0Þj2 is the square of the initial ν mixing
amplitudes, from whatever source below in the star, in
particular, the one discussed in (iv) in the introduction. In
Fig. 1 we plot the results for values jgð0Þj2 ¼ 10−4, 10−6,
10−8, using the eigenvalue calculated previously to express
the scale in meters=c.
Recall that in our definition, ΦðzÞ

α;i tracks the evolution in
the stream that has original flavor α. A transition in which

ð4NÞ−1PaΦ
ðzÞ
a goes from 1 to −1 as in Fig. 1 means

complete e↔x exchange for each beam. The curve during
the short transition is almost a perfect “tanh” kink as long as
the initial values for jgð0Þj2 are sufficiently small that the
length of the initial plateau is long compared with the
transition time, as in the plotted cases. Note that the plots
begin at the middle of a plateau and the turnover time is
proportional to jðlog jgð0ÞjÞj−1. For each reduction of a
factor of 10 in the size of the seed gð0Þ, the turnover is
2.5 m farther away from the initial surface. This observa-
tion is important in dealing with the question of the matter
effects, which in other calculations damp the growth of
oscillations in the regions of higher electron density. In our
calculation they barely matter; a tiny push, jgð0Þj2, gets the
unstable system moving, but damping this push by a factor
of 100 hardly changes the results. The nonlinear interaction
exchanges the directions and energies of e and x neutrinos
without changing their numbers, and likewise for the ν’s.
The total interaction energy with electrons in the medium
therefore does not change in this transformation since it
depends just on densities and not on spectra.
This is quite different from the situations in other

literature in which one starts on a single surface in a
flavor-diagonal state with a species independent angular
distribution and finds instabilities only after a substantial
amount of mixing from the oscillation terms. At the shorter
distances (say 15 km) with high electron densities this
mixing is strongly suppressed by the interaction with

20 40 60 80
t meters c

1.0

0.5

0.5

1.0
z

FIG. 1. Flavor turnovers as measured by zðtÞ, plotted against
time. The dotted, solid, and dashed curves are for the cases
jgð0Þj2 ¼ 10−4, 10−6, 10−8, respectively.
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electrons. This is why in typical calculations one gets
sudden turnovers only at distances of order 100 km.
Figure 1 shows total νe↔νx interchange over a very short

time from the beginning of the calculation (for a case where
νe ¼ νx). Since the temperature ratios at the ν surface are
expected to be of theorderTνx=Tνe ≈ 2 thiswould represent a
100% heating for the νe, which in turn would be much more
efficient at heating the matter in this region. This sudden
heating in the neutrino-surface region would be expected to
be very important to the explosion calculation. We can only
speculate about what might happen in amore realistic case in
which the gross governing feature remains the differing
neutrino-surface radii among the species, but the seeds (still
on a nearly planar local initial surface) are more irregular on
that surface, e.g., in ϕ dependence. As we move outward the
different domains originating with different areas on the
original surface will begin to merge. All of this appears most
likely to lead to a rather quick averaging in whichwe settle at
z ≈ 0 on average in Fig. 1. Then, instead of a 100% gain in
temperature of νe ’s we would have in effect a 50% increase,
still very potent in terms of heating the surrounding matter.
We believe that this last possibility is sufficiently likely

to justify a complete explosion calculation in which the
flavor dependence of neutrino distributions is homogenized
computationally, with respect to flavor-energy distribu-
tions, at frequent intervals, as the calculation proceeds
outward through the neutrino-sphere region. The object
would be to test qualitatively whether or not an extension of
the considerations of the present paper can have an
important effect on explosion dynamics.
It is interesting that the structure of the equations that

enter the above calculations is very similar to those for
nonlinearly interacting photons, where now flavor is to be
replaced by photon polarization in real space. This is
another reason to study general behaviors and computa-
tional algorithmic development. Possible applications
range from laboratory studies in media [32] to the polari-
zation signal in the prompt emission from gamma ray
bursts. In the latter case the vacuum γ-γ interaction remains
effectively strong out to regions of small optical depth, so
that the data could be useful in understanding the source.

I am much indebted to Georg Raffelt for making a key
observation at the very beginning of this work.
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