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We investigate the dependence of decoherence on the mode number M in a multiple-mode Aharonov-
Bohm (AB) interferometer. The design of the AB interferometer allows us to precisely determineM by the
additivity rule of ballistic conductors; meanwhile, the decoherence rate is simultaneously deduced by the
variance of the AB oscillation amplitude. The AB amplitude decreases and fluctuates with depopulating
M. Moreover, the normalized amplitude exhibits a maximum at a specific M (∼9). Data analysis reveals
that the charge-fluctuation-induced dephasing, which depends on the geometry and the charge relaxation
resistance of the system, could play an essential role in the decoherence process. Our results suggest that the
phase coherence, in principle, can be optimized using a deliberated design and pave one of the ways toward
the engineering of quantum coherence.
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Understanding quantum decoherence mechanisms is one
of the central themes in mesoscopic physics [1]. In the view
of applications, a comprehensive understanding of the
underlying physics of quantum coherence lies on the core
for developing a reliable quantum information technology
[2,3]. The dephasing process involves scattering events of
small energy and momentum transfer, degrading the quan-
tum interference phenomena in electrical transport. The
predominant decoherence mechanisms, taking a ballistic
interferometer for example, have been attributed to thermal
averaging [4] and charge-fluctuation-induced dephasing [5].
Thermal averaging ascribes the loss of phase coherence
because of the energy averaging of the transmission prob-
ability. Charge-fluctuation-induced dephasing is due to the
electron-electron (e − e) interaction between the carriers and
the surrounding charges. Theoretically, the interaction-
induced decoherence is closely related to the geometry of
the system [6,7]. Despite numerous studies, the fundamental
aspects of the dephasing sources remain unclear to date. This
is primarily because of the fact that the known dephasing
processes all lead to the suppression of the interference
signal with increasing temperature T in a T-dependent
measurement, which is the most general approach to
obtaining dephasing information [3,8–12]. Therefore, to
gain further insight into the decoherence mechanisms
requires the use of an experimental knob besides T to
distinguish the effects of the different dephasing sources.
A ballistic quantum wire is characterized by its quantized

conductance G with plateaus at G ¼ G0M, where
G0 ¼ 2e2=h and M is the mode number, denoting the

number of occupied one-dimensional (1D) subbands [13].
To probe the phase coherence, a typical method is to use a
quantum interferometer, such as a ring-shaped conductor
illustrated in Fig. 1(a), consisting of two parallel quantum
wires. The conductance of the interferometer can be
described as G ¼ G1 þ G2 þ ΔG, where G1ð2Þ is the
conductance of the upper (lower) branch. The interference
term ΔG contains the phase information. Under a small
perpendicular magnetic field, ΔG catches the Aharonov-
Bohm (AB) phase of the carriers and oscillates with a flux
period of Φ0 ≡ h=e [13]. Decoherence abates the AB
amplitude; consequently, the dephasing rate Γϕ can be
extracted. In the condition ΔG ≪ G, the relation
G ∼G1 þ G2, referred to as the additivity rule of conduct-
ance in parallel coupled quantum wires, is approximately
valid [14]. Thus, it is feasible for a ballistic AB interfer-
ometer to provide the phase information and the populated
mode numbers at once.
In this work, we aim to investigate the mode dependence

of the decoherence to address the aforementioned issues by
using an AB interferometer with a pair of side gates for
modulating the wire widths. For a ballistic wire, M is
directly related to its width W, i.e., W ∝ M [13]. Besides,
the charge-fluctuation-induced dephasing rate Γe−e is
known to be linear with the charge relaxation resistance
Rq, which is inversely proportional to M, i.e., Γe−e ∝
TRq ∝ M−1 [6,15]. In contrast, the dephasing rate of
thermal averaging Γth is believed to be independent of
M [9–12]. We seek to evaluate the effects of different
dephasing mechanisms with M. Our results show that the
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interference amplitude per mode reaches an optimized
maximum at M ∼ 9 as a result of a compromise between
the two major dephasing effects.
The layout of the interferometers is shown in Fig. 1(a).

Figure 1(b) shows the scanning electron microscopy (SEM)
image of the devices. The devices were fabricated on
modulation-doped GaAs=AlGaAs heterostructures with a
two-dimensional electron gas (2DEG) situated 90 nm
below the surface. The 2DEG has a carrier density ns ¼
1.8 × 1011 cm−2 and mobility μ ¼ 8.6 × 105 cm2=Vs at
4.2 K, corresponding to the mean free path le ∼ 6 μm. The
interferometers were defined by wet etching, followed by
the deposition of Cr=Au metals for the side gates, SG1 and
SG2. The key consideration in designing the devices is to
make the junctions at the entrance and exit smoothly
connected to the leads and slightly wider than the sum
of the widths of the branches, so that the backscattering is
reduced—to ensure the additivity rule can hold; mean-
while, the AB phase is still retained [14,16]. The devices
were measured in a two-terminal configuration with a
10-μV ac excitation voltage at a frequency of 17 Hz and
cooled using a He3 refrigerator with a base temperature
of 0.3 K.
The G of the interferometer can be tuned by applying

voltages V1 on SG1 and V2 on SG2. The interferometer is
typically operated in two manners for the AB experiment in

this work, termed as operation OP1 and OP2. For OP1, G
of one branch alone is modulated by changing V2 only
and keeping V1 ¼ 0 V. As denoted by the blue trace in
Fig. 1(c), the stairlike descent in steps ofG0, taken as a sign
of the successive depopulation of one mode in the lower
wire, is clearly observed. For OP2, G of both branches are
simultaneously varied by biasing V2 ¼ V1. The red trace in
Fig. 1(c) shows the stairlike decrease in steps of 2G0,
suggesting the sequential depletion of one mode in each
wire. Figure 1(d) shows the conductance map as a function
of V1 and V2 [17]. The conductance map is rather
symmetric about V1 ¼ V2 (dashed line). The dotted lines
in Fig. 1(d) indicate the border lines between two adjacent
plateaus. As only one wire is transmissive, the strip plateaus
of quantized conductance in units of G0 are found. While
both wires are transmissive, the diamondlike patches are
observed. The resolved 2G0 steps in symmetric gate biasing
and appearance of the diamondlike patches demonstrate the
evidences for the additivity rules [14,18,19].
The conductance map provides a means to determine

the mode numbers in the interferometer. G1ð2Þ can be
described by the Landauer formula as G1 ¼ G0

PM1

i¼1 jt1ij2
(G2 ¼ G0

PM2

j¼1 jt2jj2), where t1ið2jÞ represents the trans-
mission amplitude of the ith (jth) mode in the upper (lower)
wire, having an integer number M1ð2Þ of modes resident
[see Fig. 1(a)]. Here, we consider generalized M1ð2Þ ¼
G1ð2Þ=G0 and M ¼ G=G0 to account for both fully and
partially transmissive channels. Based on the plateau
configurations associated with G1 and G2, we can identify
the mode numbers ðM1;M2Þ at a given ðV1; V2Þ, as marked
in Figs. 1(c) and 1(d). We estimate M1 ∼ 4.5 and M2 ∼ 6

for V1 ¼ V2 ¼ 0. We checked that the additivity rule
approximately holds, implying M ∼M1 þM2, with an
error on the order of 1% of M1 þM2. The resolved
quantized plateaus on G1 and G2 allows us not only to
ensure that the interferometer is in the ballistic regime but
also to determine the exact mode numbers, M1 and M2,
involved in ΔG. In the following discussion, the aforesaid
ΔG contributed by the AB interference is denoted as ΔGAB.
We turn to the investigation of the correlation between

decoherence and the mode numbers. Figure 2(a) demon-
strates a typical magnetoconductance GðBÞ trace manifest-
ing the AB oscillations at V1 ¼ V2 ¼ 0 V. The GðBÞ trace
is nearly symmetric about B ¼ 0 T. The frequency of the
oscillation isΔB−1 ¼ 0.18� 0.08 mT−1, extracted from the
fast Fourier transform (FFT) ofGðBÞ after the subtraction of
an aperiodic background, as shown in Fig. 2(b). We only
observe the h=e fundamental harmonic, corresponding to a
circular path with radius r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h=eπΔB
p ¼ 474� 111 nm.

The AB oscillation amplitude jΔGABj is obtained by
integrating the h=e FFT peak. Figures 2(c) and 2(d) show
the evolution of ΔGAB for OP1 and OP2, respectively.
The intensity plot of ΔGAB on the B-V2 plane reveals
how the AB oscillation varies with the mode numbers. With
the depopulation of the modes in one or both wires, the

OP1: V1 = 0 V
OP2: V1 = V2

0

2

4

6

8

10

-0.4 -0.2 0.0
V2 (V)

G
 (

G
0)

T = 0.3 K
B = 0 T

-0.4 -0.3 -0.2

-0.4

-0.3

-0.2

0 1 2 3 4 5 6
G (G0)

1 µm

V
2 

(V
)

V1 (V)

t1i

t2j

V1

V2

(1,0)

(0,1)

(0,2)

(2,0)

(1,1)

(2,2)

(2,1)

(1,2)

(3,3)(2,3)(1,3)

(3,2)

SG1, V1

SG2, V2

(a) (c)

(d)(b)

(3,1)

(0,0)

SG1

SG2

(1,1)

(2,2)

(3,3)

(4,4)

(5,5)

(4.5,1)
(4.5,2)

(4.5,2)

(4.5,3)
(4.5,4)

FIG. 1. (a) Schematic diagram of a AB interferometer. The
propagating modes residing in the wires can be tuned by applying
gate voltages V1 and V2 on the side gate SG1 and SG2,
respectively. (b) SEM image of the device. (c) Representative
conductance traces measured at T ¼ 0.3 K. (d) A comprehensive
conductance map spanned by V1 and V2. The mode numbers in
the upper and lower wires are indicated as ðM1;M2Þ.
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oscillatory features gradually diminish and exhibit a gradual
phase shift and a random π phase jump.
To investigate the decoherence in the multiple-mode

interferometer, we can express ΔGAB as [5,6,20,21]

ΔGAB ¼ 2e−τΓϕG0

X
i;j

jt1ijjt2jj cos
�
2π

Φ
Φ0

þ δij

�
; ð1Þ

where τ≡ L=vF is the electron traversal time through
half the circumference L≡ πr with Fermi velocity
vF(∼1.84 × 105 m=s), and δij accounts for the phase
difference between two paths at B ¼ 0 T. While the
electron trajectories are pushed toward the inner wall of
the ring by a negative gate voltage, the mean radius reduces,
and the h=e FFT peak shifts to lower frequency, as
demonstrated in Fig. 3(a). In Fig. 3(b), r is plotted vs M
and shows a linear relationship rðMÞ ¼ 9.5M þ 377 nm.
ForM∼10.5 at V1¼V2 ¼ 0V, we obtain rðMÞ ∼ 477 nm,
in agreement with the mean radius evaluated from the SEM
image [see Fig. 1(b)].
Figure 3(c) shows the dependence of jΔGABj on M. We

find that jΔGABj fluctuates and decreases with reducingM.
Let us first focus on the general decline trend of jΔGABj. As
indicated by the dotted lines in Fig. 3(c), jΔGABj ∝ M −
4.5 for OP1 and jΔGABj ∝ M2 for OP2. To understand
these distinct dependences, we note that from Eq. (1),
jΔGABj is directly proportional to the term

P
i;jjt1ijjt2jj,

which sums up all accessible modes involved in ΔGAB.
The observation of well-resolved plateaus allows us to
reasonably assume jt2jj ¼ 1 for OP1 and jt1ij ¼ jt2jj ¼ 1

for OP2 when counting fully transmissive modes. For OP1,
where the upper wire retains a nearly constant value of
M1 ∼ 4.5 so that M2 ∼M − 4.5, we have

P
i;jjt1ijjt2jj ∝P

jjt2jj ¼ M2 ∼M − 4.5. In contrast, for OP2, we have
M1 ∼M2 ∼M=2, and the summation is given byP

i;jjt1ijjt2jj ¼ ðPijt1ijÞ2 ¼ M2
1 ∝ ∼M2. The observed

correlations of jΔGABj with M can be summarized as
the relation jΔGABj ∝ ∼M1M2, suggesting that each mode
equally contributes to ΔGAB.
We now proceed to discuss the fluctuations in jΔGABj.

Figures 4(a) and 4(b) show jΔGABj normalized to M1M2,
plotted as a function of M. With the decrease of M, the
normalized amplitude jΔGABj=M1M2 exhibits fluctuations
enveloped by an arc-shaped feature with a maximum at
M ∼ 9, demarcated by the dashed lines. Here, jΔGABj=
M1M2 represents the AB amplitude contributed by one
mode in each branch of the interferometer and is propor-
tional to expð−τΓϕÞ [see Eq. (1)]. Hence, Figs. 4(a)
and 4(b) reveal the M dependence of τΓϕ. To interpret
our findings, we consider Γϕ ¼ Γe−e þ Γth, where Γe−e ¼
ðe=ℏÞ2kBTðCμ=CÞ2ðRq1 þ Rq2Þ for parallel addable quan-
tum wires [6,22] and Γth ¼ kBT=ℏ [9–12]. Here, Cμ is the
electrochemical capacitance, C is the geometrical capaci-
tance, and Rq1ð2Þ is the charge relaxation resistance of the
upper (lower) wire. In our case, the interferometer remains
charge neutral, so we can reasonably assume Cμ=C ∼ 1
[5,6]. Theoretically, the charge relaxation resistance of a
ballistic wire varies with the density of states (DOS):
Rq1ð2Þ ¼ ðh=8e2ÞM−1

1ð2Þ when G1ð2Þ is at a plateau position
and the DOS of each channel is comparable, whereas

FIG. 2. (a) A representative trace of AB oscillations in the
magnetoconductance measured at V1 ¼ V2 ¼ 0 V and
T ¼ 0.3 K. (b) Fast Fourier spectrum of the trace in (a) after
deducting an aperiodic background. (c) and (d) The evolution of
the AB oscillation component ΔGAB as a function of V2 for
operations OP1 and OP2, respectively.
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FIG. 3. Data analysis of AB oscillations. (a) Representative
FFT spectra of ΔGAB in Fig. 2(d). (b) The radius r as a function
of M. (c) jΔGABj as a function of M − 4.5 for OP1 and M for
OP2. (d) The temperature dependence of jΔGABj taken at
V1 ¼ V2 ¼ 0 V.
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Rq1ð2Þ ¼ h=8e2 when G1ð2Þ undergoes a mode transition
and the DOS has a singularity at the threshold of a channel
[15]. As a result, Γe−e oscillates with decreasing M.
The oscillation of Γe−e qualitatively explains the observed
fluctuations in jΔGABj=M1M2. The fluctuations shown in
Figs. 4(a) and 4(b) are reproducible; nevertheless, the dip
minimums do not exactly match to the singularity positions
of the DOS, predicted by the theory. This discrepancy may
result from disorder effects, probably due to the mode
mismatch at the junctions [14] or defects in the wires [23].
To understand the overall changes of jΔGABj=M1M2,

shown by the dashed lines, we shall consider the interplay of
Γe−e, Γth, and τ withM. We provide a quantitative evaluation
of the relevant parameters in the following. Figure 3(d)
shows the jΔGABj vs T plot at V1 ¼ V2 ¼ 0 V. It appears
that jΔGABj ∝ expð−bTÞ with b ¼ 1.10� 0.11K−1, based
on the best numerical fit. The value of b is comparable to the
values in previous reports [3,8–12]. Note that τΓϕ ¼ bT.
We consider that the DOS for each mode is comparable,
i.e., Rq1ð2Þ ¼ ðh=8e2ÞM−1

1ð2Þ, with Cμ=C ¼ 0.8 and obtain

Γe−e=Γth ∼ 0.2 at V1 ¼ V2 ¼ 0 V. Figure 4(c) shows the
calculated τ and Γe−e for OP1 and OP2 as a function of M
with T ¼ 0.3 K. Clearly, with depopulatingM, τ decreases,
and Γe−e increases while Γth is a constant of M, so that Γϕ

increases. Consequently, the factor expð−τΓϕÞ behaves as a
concave function of M with a maximum at M ∼ 9, which
captures the essential trends observed in the experiments. In
addition, the fact that we do not find any identifiable causal
relation between δij and jΔGABj=M1M2 suggests that Γϕ is

uncorrelated to δij, viz., the intermode scattering may have
little effect on the dephasing processes.
By illustrating the mode dependence of Γϕ, in essence,

we demonstrate a route to link the phase coherence and the
device geometry; namely, the coherence of a multimode
quantum system, in principle, can be engineered. Taking a
quantum interferometer as an example, we consider an
annulus with a mean radius r ¼ αM þ r0, where r0 is the
inner radius and α is a geometric factor, which depends on
the complementarity of the controlling gate, if any, and the
wafer. The most optimized coherence per mode would be

around M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ=4ÞðCμ=CÞ2ðr0=αÞ

q
.

In conclusion, we studied the mode dependence of the
phase coherence in a ballistic AB interferometer. We found
that the AB amplitude is nearly proportional to M1M2

and fluctuates with the reduction of M, and the normalized
AB amplitude shows a maximum at M ∼ 9. The observed
M dependences of the AB amplitude can be explained by
recent theories based on the charge-fluctuation-induced
dephasing process. The phase coherence in a multimode
quantum wire is governed by the interplay of the geometric
effects, the thermal averaging effect, and the e-e interaction
induced decoherence. We verify that the singularity of DOS
in a quasi-1D wire plays an important role in decoherence
and clarify that the intermode scattering is not the dominant
dephasing source. Our findings have important implica-
tions for the decoherence mechanisms and for the design of
future quantum electronic devices.
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