
What Determines the Static Force Chains in Stressed Granular Media?

Oleg Gendelman,* Yoav G. Pollack, Itamar Procaccia, Shiladitya Sengupta, and Jacques Zylberg
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

(Received 27 May 2015; published 17 February 2016)

The determination of the normal and transverse (frictional) interparticle forces within a granular medium
is a long-standing, daunting, and yet unresolved problem. We present a new formalism that employs the
knowledge of the external forces and the orientations of contacts between particles (of any given size), to
compute all the interparticle forces. Having solved this problem, we exemplify the efficacy of the
formalism showing that the force chains in such systems are determined by an expansion in the
eigenfunctions of a newly defined operator.
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In a highly influential paper from 2005 Majmudar and
Behringer [1] wrote, “Interparticle forces in granular media
form an inhomogeneous distribution of filamentary force
chains. Understanding such forces and their spatial corre-
lations, specifically in response to forces at the system
boundaries, represents a fundamental goal of granular
mechanics. The problem is of relevance to civil engineer-
ing, geophysics and physics, being important for the
understanding of jamming, shear-induced yielding and
mechanical response.” A visual example of such force
chains in a system of plastic disks is provided in Fig. 1. In
this Letter we present a solution of this goal.
To be precise, the problem that we solve is the following:

consider a granular medium with known sizes of the
granules, for example, the two-dimensional systems ana-
lyzed in Ref. [1] and shown in Fig. 1, of N disks of known
diameters fσigNi¼1. Given the external forces, denoted
below as Fext

i , and the external torques Γext
i exerted on

the granules, and given the angular orientations of the
vectors connecting the center of masses of contacting
granules (but not the distance between them), determine
all the interparticle normal and tangential forces f nij and f

t
ij.

The method presented below applies to granular systems in
mechanical equilibrium; the issue of instabilities and abrupt
changes in the force chains will be discussed elsewhere. For
the sake of clarity and simplicity we will present here the
two-dimensional case; the savvy reader will recognize that
the formalism and the solution presented will go smoothly
also for the three-dimensional case (as long as the system is
in mechanical equilibrium). The full formalism will be
presented in a longer publication in due course.
The obvious conditions for mechanical equilibrium are

that the forces and the torques on each particle have to sum
up to zero [2]. The condition of force balance is usefully
presented in matrix form using the following notation.
Denote the (signed) amplitudes of the interparticle forces
fij as a vector jfi, where the amplitudes fnij appear first and
then the amplitudes ftij. The vector of the x and y
components Fext

i;x and Fext
i;y is denoted as jFexti, where all

the x components are presented in jFexti first and then
all the y components. The vector jfi has 2c entries, where c
is the number of contacts between particles. The vector
jFexti has 2N entrieswhereN is the number of particles,with
zero entries for all the particles on which there is no external
force. We can then write the force balance condition as

Mjfi ¼ −jFexti; ð1Þ

where M is a 2N × 2c matrix. The entries in the matrix M
contain the directional information; see the Supplemental
Material [3] for an example of anM matrix. Denote the unit
vector in the direction of the vector distance between the
centers of mass of particles i and j by n̂ij, and the tangential
vector by t̂ij orthogonal to n̂ij. Then the entries ofM display
the projections n̂ij;x and n̂ij;y or t̂ij;x and t̂ij;y as appropriate.
We thus guarantee that Eq. (1) is equivalent to the mechani-
cal equilibrium condition

FIG. 1. Force chains in a binary system of plastic disks of two
diameters, stressed uniaxially at the boundaries. The force chains
are made visual by the optical birefringence of the stressed disks.
The image is courtesy of V. Sathish Akella and Mahesh Bandi,
Okinawa Institute of Science and Technology.
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X
j

f ij þ Fext
i ¼ 0: ð2Þ

As is well known, the frictionless granular system in the
thermodynamic limit is jammed exactly at the isostatic
condition 2N ¼ c [4]. In the frictionless caseM is a 2N × c
matrix and as long as c ¼ 2N one can solve the problem by
multiplying Eq. (1) by the transpose MT , getting

MTMjfi ¼ −MT jFexti: ð3Þ

In this case the matrix MTM has generically exactly three
Goldstone modes (two for translation and one for rotation)
[5], and since the external force vector is orthogonal to the
Goldstone modes (otherwise the external forces will trans-
late or rotate the system), Eq. (3) can be inverted with
impunity by multiplying by ½MTM�−1. In fact, even when
c < 2N but the system is small enough to be jammed, this
method can be used since there are enough constraints to
solve for the forces. This last comment is important for our
developments below.
The problem becomes underdetermined above isostatic-

ity in the frictionless case, when force chains begin to build
up that span from one boundary to the other. With friction
we anyway have twice as many unknowns and we need to
add the constraints of torque balance. The condition of
torque balance is

P
jri × f tij þ Γext

i ¼ 0 on every particle,
where Γext

i is the external torque exerted on the ith disk [5].
For disks, ri is in the normal direction, and therefore the
torque balance becomes a condition that the sum of
tangential forces has to balance the external tangential
force. This condition can be added to Eq. (1) using a new
matrix B in the form

Bjfi≡
�

M

0 T

�����
�
fn

ft

��
¼ −

��������

0
B@

Fext
x

Fext
y

Γext

1
CA
�

: ð4Þ

The order of the extended matrix B is 3N × 2c; see
Supplemental Material [3] for an example of T. Above
jamming, when the number of contacts increases 2c ≫ 3N.
The matrix B is not square, and the matrix BTB, which is of
size 2c × 2c, has at least 2c − 3N zero modes [6].
Accordingly, it cannot be inverted and one can conclude
that the conditions of mechanical equilibrium are not
sufficient to determine all the forces.
Obviously, what is missing are additional constraints to

remove the host of zero modes. These additional con-
straints are geometrical constraints [7,8], which can be read
from those disks that describe connected polygons. In other
words, since we know the orientation n̂ij of each contact in
our system, we can determine which granules are stressed
in a triangular arrangement, and which in a square or
pentagonal, etc.; see Fig. 2. Each such arrangement is a

constraint on the radius vectors adjoining the centers of
mass. For example, if particles i, j, and k are in a triangular
arrangement then rij þ rjk þ rki ¼ 0, with the analogous
constraint on squares, pentagons, etc. These constraints can
be written in a matrix form by denoting the amplitudes of
interparticle vector distances as jri, where we again arrange
the x components first and the y components second:

Qjri ¼ 0; ð5Þ
where the matrix Q again has entries n̂ij;x or n̂ij;y as
appropriate to represent the vectorial geometric constraints;
see Supplemental Material [3] for an example of Q.
Denoting the total number of polygons by P, the dimension
of the matrixQ is 2P × c. Of course, jri has c entries while
jfi had 2c entries. Note that in generic situations there can
be also disks which are not stressed at all. These are
referred to as “rattlers.” For example, in the configuration
shown in Fig. 2 there exist 14 rattlers.
At this point we specialize the treatment to Hookean

normal forces with a given force constant κ [9]. Non-
Hookean forces result in a nonlinear theory that can still be
solved but much less elegantly. For the present case

f nij ¼ κ½ðσi þ σjÞn̂ij=2 − rij�: ð6Þ

Denoting the amplitudes of the vectors ðσi þ σjÞn̂ij=2 as
the vector jσi (again with first the x and then the y
components), we can rewrite Eq. (5) in the form

Qjri ¼ Qjσ − fn=κi ¼ 0; ð7Þ

Qjfni ¼ Qjκσi: ð8Þ

Having this result at hand we can formulate the final
problem to be solved. Arrange now a new matrix, say G,
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FIG. 2. A generic situation in a stressed arrangement of
N ¼ 242 binary disks of diameters σ1 ¼ 1, σ2 ¼ 1.5. Here
c ¼ 432. Shown are the P ¼ 205 polygons: 80 triangles in blue,
77 squares in red, 36 pentagons in green, 7 hexagons in yellow, 4
heptagons in cyan, and 1 octagon in black. The Euler character-
istic of the system is as expected N − cþ ðPþ 1Þ ¼ 2þ R since
we have 14 rattlers.
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operating on a vector jfi, with a right-hand side being a
vector, say jti, made of a stacking of jFexti, jΓexti, and
Qjκσi, as before with x and then y components:

Gjfi≡
0
B@

M

0 T

Q 0

1
CA
����
�
fn

ft

��
¼

���������

0
BBB@

−Fext
x

−Fext
y

−Γext

Qjκσi

1
CCCA
+

: ð9Þ

Using these objects our problem is now

Gjfi ¼ jti: ð10Þ
The dimension of the matrix G is ð3N þ 2PÞ × 2c and the
matrix GTG has the dimension 2c × 2c. We can use now
the Euler characteristic [10] to show that the situation has
been returned here to the analog of the invertible matrix
MTM when c ≤ 2N: the Euler characteristic in two
dimensions requires that

N − cþ ðPþ 1Þ ¼ 2þ R; ð11Þ
where R is the number of rattlers, i.e., disks on which there
is no force. Accordingly, we find that

2c ¼ 2N þ 2P − 2 − 2R ≪ 3N þ 2P: ð12Þ
Consequently, the matrix GTG has no zero eigenmodes.
Thus, the final solution for the forces can be obtained as

jfi ¼ ðGTGÞ−1GT jti ¼
X
i

hΨijGT jti
λi

jΨii; ð13Þ

where Ψi is the set of eigenfunctions of GTG associated
with eigenvalues λi. We compared the interparticle forces
obtained from direct numerical simulations (see below for
details) to those computed from Eq. (13). Both normal and
tangential forces are of course identical to machine accu-
racy. We reiterate that we did not need to know the
distances between particles. This is important in applying
the formalism to experiments since it is very difficult to
measure with precision the degree of compression of hard
particles like, say, metal balls or sand particles. Note also
the remarkable fact that we never had to provide the
frictional (tangential) force law in the formalism to obtain
the correct forces.
At this point we can discuss the force chains. By

definition these are the large forces in the system that
provide the tenuous network that keeps the system rigid.
Observing Eq. (13) we should focus on the eigenfunction
Ψi of GTG that have the smallest eigenvalues and the
largest overlaps with GT jti. These can be found and
arranged in order of the magnitude of hΨijGT jti=λi
independently of the calculation of jfi. In Fig. 3 we show
the contribution to the total energy hfjfi=κ, learning that

about 20% of the leading eigenfunctions are responsible for
90% of the energy. We can therefore hope that the force
chains will be determined by the same relatively small
number of eigenfunctions. This is not guaranteed; due to
contributions to the forces that oscillate in sign, the
convergence can be much slower than in the case of the
energy where the sum is of positive contributions. In Fig. 4
we show in the upper left panel the force chains in the
configuration of Fig. 2. In the other panels we show the
prediction of the force chains using 100, 200, and 300 of
the (energy) leading modes. We learn that with 100 out of
the 864 modes the main force chains begin to be visible.
With 200 out of the 864 modes the full structure of the force
chains is already apparent, although with 300 it is repre-
sented even better.

FIG. 3. The cumulative percentage contribution to the energy of
the eigenfunctions Ψi of GTG, ordered according to the magni-
tude of hΨijGT jti=λi. The convergence is relatively fast with the
first 168 leading eigenfunctions (out of 864 modes) contributing
90% of the total energy.
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FIG. 4. Upper panel: the force chains in the configuration
shown in Fig. 2. Lower panel: the force chains as predicted from
100, 200, and 300 (energy) leading modes. While the main
contributions to the force chains are visible already with 100 out
of the 864 modes, the full structure is apparent only with 200.
Using 300 modes, we see a reasonably faithful reproduction of
the force chains.
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Since the number of geometric constraints is very large,
one can ask whether all the geometric constraints are
necessary, as Eq. (11) shows that 2c ≪ 3N þ 2P. The
answer is no, we could leave out constraints as long as we
have enough conditions to determine the solution. There is
the obvious question then why do we have a unique
solution when the number of equations is larger than the
number of unknowns. The answer to this question
lies in the properties of the vector jti and the matrix
GGT which does have many zero modes. A condition for
the existence of a solution is that jti is orthogonal to all the
zero modes of GGT , as can be easily checked. We have
ascertained in our simulations that this condition is
always met.
In the near future we will present an extension of this

formalism to three dimensions and the use of the formalism
to study the instabilities of the force networks to changes in
the external forces. As a final comment we should note
that in fact only one external force is necessary to determine
all the interdisk forces. This single external force is
necessary to remove the rescaling freedom that this
problem has by definition.
Simulations.—For the numerical experiments in two

dimensions we use disks of two diameters, a “small”
one with diameter σs ¼ 1.0 and a “large” one with diameter
σl ¼ 1.5. Such N disks are put between virtual walls at
x ¼ �a and y ¼ �b. These walls exert external forces
on the disks. The external forces are taken as Hookean
for simplicity. For disks near the wall at x ¼ �a we
write

Fextðri;xÞ ¼ −ðri;x − aÞ if ri;x > a

¼ −ðri;x þ aÞ if ri;x < −a

¼ 0 otherwise: ð14Þ

Here, ri;x denotes the x component of the position vector
ri of the center of mass of the ith disk, and we have a
similar equation for the y components with a replaced by
b. When two disks, say disk i and disk j are pressed
against each other we define their amount of compression
as δrij:

δrij ¼ σij − rij; σij ≡ ðσi þ σjÞ=2; ð15Þ

where rij is the actual distance between the centers of mass
of the disks i and j.
In our simulations the normal force between the disks

acts along the radius vector connecting the centers of mass.
We employ a Hookean force f nij ¼ κδrijn̂ij.
To define the tangential force between the disks we

consider (an imaginary) tangential spring at every contact
which is put at rest whenever a contact between the two
disks is formed. During the simulation we implement
memory such that for each contact we store the signed

distance δtij to the initial rest state. For small deviations
we require a linear relationship between the displacement
and the acting tangential force. This relationship breaks
when the magnitude of the tangential force reaches μfnij,
where, due to Coulomb’s law, the tangential loading
can no longer be stored and is thus dissipated. When this
limit is reached the bond breaks and after a slipping
event the bond is restored with a the tangential spring
being loaded to its full capacity (equal to the Coulomb
limit).
The numerical results reported above were obtained by

starting with N ¼ 242 particles on a rectangular grid (ratio
1∶2) with small random deviations in space and no
contacts. We implement a large box that contains all the
particles. The box acts on the system by exerting a restoring
harmonic normal force as described in Eq. (14). The
experiment is an iterative process in which we first
shrink the containing box infinitesimally (conserving the
ratio). The second step is to annul all the forces and
torques, to bring the system back to a state of mechanical
equilibrium. We therefore annul the forces using a con-
jugate gradient minimizer acting to minimize the
resulting forces and torque on all particles. We iterate
these two steps until the system is compressed to the
desired state.

This work had been supported in part by an “ideas” grant
STANPAS of the ERC. We thank Deepak Dhar for some
very useful discussions. We are grateful to Edan Lerner for
reading an early version of the manuscript with very useful
remarks.

*Faculty of Mechanical Engineering, Technion, Haifa
32000, Israel.

[1] T. S. Majmudar and R. P. Behringer, Contact force mea-
surements and stress-induced anisotropy in granular materi-
als, Nature (London) 435, 1079 (2005).

[2] S. Alexander, Amorphous solids: Their structure, lattice
dynamics and elasticity, Phys. Rep. 296, 65 (1998).

[3] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.116.078001 for exam-
ples of the M, T and Q matrices.

[4] M. Wyart, S. R. Nagel, and T. A. Witten, Geometric origin
of excess low-frequency vibrational modes in weakly
connected amorphous solids, Europhys. Lett. 72, 486
(2005).

[5] The existence of rattlers that are not in close contact with
other particles may increase the number of zero modes.

[6] To see this note that the matrices BTB and BBT have the
same rank, but BBT cannot have more than 3N nonzero

eigenmodes. Therefore, BTB must have at least 2c − 3N

zero modes.
[7] R. C. Ball and R. Blumenfeld, Stress Field in Granular

Systems: Loop Forces and Potential Formulation, Phys.
Rev. Lett. 88, 115505 (2002).

PRL 116, 078001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

19 FEBRUARY 2016

078001-4

http://dx.doi.org/10.1038/nature03805
http://dx.doi.org/10.1016/S0370-1573(97)00069-0
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.078001
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1103/PhysRevLett.88.115505
http://dx.doi.org/10.1103/PhysRevLett.88.115505


[8] R. Blumenfeld, Stresses in Isostatic Granular Systems and
Emergence of Force Chains, Phys. Rev. Lett. 93, 108301
(2004).

[9] The relevance of the linear forces to laboratory experiments
was shown in T. S. Majmudar, M. Sperl, S. Luding, and R. P.
Behringer, Jamming Transition in Granular Systems, Phys.

Rev. Lett. 98, 058001 (2007), and the Supplemental
Material.

[10] S. V. Matveev, in Euler Characteristic, Encyclopedia of
Mathematics, edited by M. Hazewinkel (Springer, New
York, 2001), ISBN 978-1-55608-010-4.

PRL 116, 078001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

19 FEBRUARY 2016

078001-5

http://dx.doi.org/10.1103/PhysRevLett.93.108301
http://dx.doi.org/10.1103/PhysRevLett.93.108301
http://dx.doi.org/10.1103/PhysRevLett.98.058001
http://dx.doi.org/10.1103/PhysRevLett.98.058001

