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Dirac strings in spin ices are lines of reversed dipoles joining two quasiparticle excitations. These
excitations behave as unbound emergent monopoles if the tension of Dirac strings vanishes. In this Letter,
analytical and numerical analysis are used to study the dynamics of two-dimensional dipolar spin ices,
artificially created analogs of bulk spin ice, in the regime of bound monopoles. It is shown that, in this
regime, strings, rather than monopoles, are effective degrees of freedom explaining the finite-width band of
Pauling states. A measurable prediction of path-time dependence of endpoints of a stretched and, then,
released Dirac string is made and verified via simulations. It is shown that string dynamics is defined by the
characteristic tension-to-mass ratio, which is determined by the fine structure constant and lattice
dependent parameter. It is proposed to use string tension to achieve spontaneous magnetic currents.
A concept of an energy storing device on the basis of this principle is proposed and illustrated by an
experimental demonstration. A scheme of independent measurement at the nanoscale is proposed.
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Two-dimensional dipolar spin ice (2D-DSI) has been
introduced to mimic the three-dimensional dipolar spin
ice (3D-DSI) [1] in artificial nanomagnetic arrays [2–4].
2D-DSI are systems with “macroscopic” degeneracy of
ground states in ensembles of magnetic islands with local
Ising anisotropy axes coupled by the dipolar interaction
and sitting on the square or the kagome lattice. One of the
recent developments in spin-ice research concerns the
defects also known as “emerging magnetic monopoles”
[5–9]. To define the strength of a monopole, each dipole is
represented by a dumbbell with charges �qi residing at
the vertices of the adjoint lattice, e.g., tetrahedra, squares,
or honeycombs. Overturning a dipole leads to emergence
of charges Qm ¼ P

iqi. If the tension T0 of Dirac strings
(DSs) connecting two charges of opposite sign vanishes,
these charges become unbound [5,10–13]. Unbound
monopoles in 3D-DSI are coupled via magnetic
Coulomb interaction identical up to a prefactor to that of
its electric counterpart [5,10]. While deconfinement in
3D-DSI is easily achieved, one has to go to high temper-
atures or fields in the case of 2D-DSI [13,14]. Application
of a sufficiently strong external magnetic field often results
in cascade effects of movement of unbound monopoles.
Statistics and criticality of those, field driven avalanches in
connected and disconnected square, honeycomb, and
kagome networks has been studied in [15–17]. An ongoing
discussion concerns the magnetic currents of monopoles in
3D-DSI [1,18] and 2D-DSI [19] defined as “magnetricity”.
The ultimate goal of this field is the creation of a
“magnetic” analogue to electrical circuits [20].
While magnetricity of unbound monopoles has

been widely discussed in the literature, the regime of
bound monopoles (BMs) remained unexplored until

now. A systematic study of confined dynamics, however,
is very important because the deconfined regime is
vanishing in standard 2D-DSI [6,13,14]. The present
investigation shows that, in 2D-DSI, DSs, rather than
monopoles, are effective degrees of freedom. Particularly,
BMs do not obey the Coulomb law. BMs of opposite sign
can be attracted or repulsed depending on the DS tension-
to-mass ratio T0=2m, which is defined by the fine-
structure constant α ≈ 1=137 times lattice dependent
parameter. It is shown how this peculiarity can be used
to achieve spontaneous magnetic currents and to store
energy. Spontaneous current in 2D-DSI dies after a certain
time. Its duration, however, can be increased by increasing
the sample length.
While realistic 2D-DSI may have some degree of

disorder on all scales, these calculations are restricted to
an ideal ensemble of dipoles for the sake of clarity. The
energy of a spin at lattice site i includes contributions from
all dipoles on the lattice Ei ¼ w

P
jf½ðSi · SjÞ=r3ij�−

3½ðSi · rijÞðSj · rijÞ�=r5ijg, where Si is a unit spin vector.
The prefactor w ¼ ðμ0μ2=4πa3Þ, with the magnetic
moment μ, magnetic permeability μ0 and lattice constant
a, gives the strength of the interaction. This sum is
evaluated numerically using Ewald summation or open
boundary conditions. Previous analysis of equilibrium
properties of square 2D-DSI has shown that, at exper-
imental temperatures, it should be well in its ordered
ground state [6,8]; i.e., the entire sample has to consist
of the vertices of type T1 only (T1 background in the
following, see Fig. 1). The energy of a dipole in an infinite
T1 background is ET1 ≈ −5.10 [w=site]. A saturated square
2D-DSI consists of T2 vertices only with ET2 ≈ −1.51
[w=site] (T2 background). The ice state is a statistical
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mixture of T1 and T2 domains [8] defining the band width
of Pauling states.
Energy cost of a DS of length r [UðrÞ ¼ EDSðrÞ − ET1

]
can be fitted by the function UðrÞ ¼ −γ=rþ T0rþ c as
postulated in [13,14]. In this expression, T0 is the DS
tension, while γ=r comes from the smeared charge at DS
ends [21]. Here, UðrÞ for strings of Figs. 1(a) and 1(b) has
been calculated in samples of different size. Obtained
results are in good agreement with those of [14].
However, they show that slope jdUðrÞ=drj slightly
increases with sample size approaching the value of
T0 ≈�7.3w=a (T1 and T2 background, respectively) for
r≳ 70a and samples > 140a × 140a [see Fig. 1(c)]. The
critical DS length of 70a characterizes the range of the γ=r
potential and, hence, the size of charge clouds surrounding
BMs. For r≲ 70a the BM clouds overlap, for r > 70a, but
in samples < 140a, they are cut off by boundaries.
An important question is whether the limit of r ≈ 70a is

caused by the numerical accuracy, or if there is a physical
reason for this finding. This question is addressed, ana-
lytically, in Sec. C of [21]. The main conclusion is that the
BM energy cloud is finite. Strictly speaking, γ=r term in
UðrÞ has to be replaced by a similar, but convergent [22],
sum of polygamma functions: ΨðrÞ ¼ ET1=T2=2D−DSIþP

i;nψ
i
nðrÞ. However, ΨðrÞ can be approximated by the

standard 1=r dependence

UðrÞ ∝ T0r −ΨðrÞ ≈ T0r − γ=rþ const: ð1Þ
The localized character of energy peaks around BMs can be
seen in the energy profile of Fig. 1(d). The finiteness of
BMs permits us to estimate their mass from the mass-
energy equivalence UBM ¼ mc2. The UBM ≈Uð70aÞ,
because at r ≈ 70a the BM clouds do not overlap, but
there is still no free DS between them. As Uð70aÞ ≈ 500w,
the rest mass becomesm ≈ 500w=c2. The γ=r term alone is
shown in Fig. 1(e). It is weak and always repulsive. The
total potential UðrÞ is attractive (T0 > 0) for a DS in T1,
while repulsive (T0 < 0) for a DS in T2 background. This
conclusion is interesting because it suggests non-Coulomb
attraction or repulsion of unlike BMs at any separation.
That is, a DS in T1 will spontaneously shrink, while a DS in
T2 background will spontaneously expand until the regime
T0 ¼ 0 is reached. One can use this property for sponta-
neous magnetricity of BMs without application of an
external field.
The dynamics of BMs can be estimated from the second

Newton law: m̈r ¼ F. The force acting on BMs is jFðrÞj ¼
−dUðrÞ=dr ≈ �T0 ≈ �7.3w=a at r > 70a and jFðrÞj ≈
�T0 þ γ=r2 at smaller distances. Solutions of the Newton
law in the limit of γ=r → 0 and T0r → 0 are given by
Eq. (2) with L0 initial DS length (see details in [21])

rðtÞ ≈

8><
>:

L0 − 2t
ffiffiffiffiffiffiffiffi
L0T0

2m

q
þ t2 T0

2m if γ=r → 0
�
L3=2
0 þ 3t

ffiffiffiffiffiγ
2m

p �
2=3

if T0r → 0
: ð2Þ

All parameters in Eq. (2) are already known. To check
Eq. (2), Monte Carlo (MC) and Landau-Lifshitz-Gilbert
spin dynamics (SD) simulations have been performed [21].
Additionally, an experimental model of interacting mag-
netic elements (see videos SI5–SI6 in [21]) has been built.
First, results for atomistic 2D-DSI are presented. Then,
calculations for realistic artificial spin ice will be discussed.
Atomistic calculations have been done in the limit of

strong coupling; i.e., coercivities of all dipoles were identical
and weaker than the intersite interaction. The path-time
dependencies of BM motion are shown in Figs. 2(a), 2(b),
and in videos SI2–SI4 in [21]. Initially, a DS [Fig. 2(a)] or
many such strings [Fig. 2(b)] were created. Next, they were
allowed to relax without field. The path-time dependence
rðtÞ of BM movement was recorded and represented in
Fig. 2 as density maps. The color and its intensity give the
sign and mean strength of BMs. Two scenarios have been
checked. In Fig. 2(a), negative BMs (rim dipoles) were
pinned, while positive BMs were free to move. In Fig. 2(b),
all magnetic moments were free. Once simulations were
started, spontaneous BM movement evolved in MC as well
as in SD simulations. In contradiction to the Coulomb law,
BMs were attracted or repulsed depending on the back-
ground (see the videos in the Supplemental Material [21]).
Both rðtÞ dependencies were successfully fitted by Eqs. (2)

FIG. 1. (a, b) Examples of microscopic configurations used for
static calculations. Color scheme gives the energy per dipole.
(c) Total energy cost due to formation of DSs of length r in a
sample 200a × 200a. Numerical data (dots) are fitted by Eq. (1)
with T0 ≈ 7.3w=a and γ ≈ 0.5wa. The inset gives the difference
between the total potential and the linear term T0r. (d) Spatial
energy profile along the DSs of panel (a) and schematic drawing
of T1 and T2 vertices. (e) Interaction potential between two BMs
of opposite sign in different backgrounds calculated analytically
(dots). Lines are fits by function γ=rwith γ ≈ 1=2. The γ=r term is
repulsive.
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with T0=2m ≈ 7.3 × 10−3 � 5 × 10−4a=MCS2. In samples
with many DSs, the BMs move in several fronts because of
local repulsion [see Fig. 2(b)]. A snapshot at t ¼ 5
Monte Carlo steps (MCS) is shown in Fig. 2(c).
The values T0 ≈ 7.3w=a and 2m ≈ 103w=c2 have already

been estimated from the potential UðrÞ in Fig. 1(c). Please
note that numbers 7.3 and 103 come from the dimensionless
dipolar sum, while dimension is defined by the parameters
w=a and w=c2. Hence, the force between two BMs is
proportional to the dimensionless parameter T0=2m ≈ 7.3 ×
10−3 times dimensional factor c2=a. An interesting obser-
vation is that 7.3 × 10−3 ≈ 1=137 is close to the fine-
structure constant α. To understand this result, one has to
recall that in classical electrodynamics the force between
the north and south poles of magnetic circuits is Φ2=2μ0A
with Φ the magnetic flux and A the pole’s cross-sectional
area. As the flux is carried by Dirac strings, we can use
this expression to describe the interaction between BMs.
According to the Gauss law the flux from a BM is
Φ ¼ H

BdA ¼ μ0Qm. On the other hand, the attraction force
between two BMs is mainly determined by T0. Hence,
T0 ≈ Φ2=2μ0A ¼ μ0Q2

m=2A. The most popular definition of

the fine-structure constant is α ¼ Q2
e=ð4πϵ0ℏcÞ in SI units.

In this expression, α is the dimensionless ratio of two
constants of proportionality: this of the force (Q2

e=4πϵ0) and
that of electromagnetic radiation (ℏc). The electron mass is
related to ℏ via me ¼ ℏ=cλC with λC the Compton length.
The fine-structure constant in 2D-DSI is a coefficient in the
expression T0=2m. Replacing the me by the mass of BMs
me ≡m, the Compton length by the lattice constant λC ≡ a,
and the pole area by A ¼ 4πa2, one obtains T0=2m≈
ðμ0=2ÞðQ2

m=4πℏÞðc=aÞ¼ ðμ0=2ÞðQ2
m=4πℏcÞðc2=aÞ or

T0=2m ≈ α in units of c2=a. Hence, the appearance of α
seems not to be a numerical coincidence but, rather, gives the
coupling constant of BM interaction.
To reveal the microscopic reason for the spontaneous

BMmovement, stray fields ~Hst acting on dipoles in 2D-DSI
have been calculated and plotted in Fig. 2(d). Fields (black
arrows) acting on dipoles far from BMs are small and do
not have any component which is antiparallel to the

magnetization ~Si. These fields cannot reverse magnetiza-
tion. Fields acting on dipoles forming BMs, in contrast, are
large (jHstj ≈ 2πμ0μ), perpendicular, or have a negative

component to ~Si. The corresponding torque ~Hst × ~Si
induces spin flips and, hence, spontaneous movement of
BMs decreasing their local energy (any flip transforms T2

into T1 vertex). Hence, the microscopic reason for the
spontaneous BM drift is local stray fields. Another impor-
tant observation from the simulations is that the reduction
of the string energy T0r is achieved by the formation of
closed loops consisting of low-energy T1 vertices only [see
Fig. 3(a)]. One infinitely long, ordered closed loop corre-
sponds to the ground T1 state. The state with many
disordered closed loops is nothing but 2D-DSI. The
space-time diagram of Fig. 3(a) and video SI3 [21] show
that BMs annihilate whenever this leads to formation of a
closed loop. The requirement of loop closure can be written
mathematically as the Maxwell continuity equation
dρ=dtþ∇ · j ¼ 0, where j is the current density of
monopoles [12,21].
In artificial 2D-DSI, each magnetic element consists of

microscopic spins as shown in Figs. 3(b) and 3(c). The
energy map of a cross section through the center of
elements of a Dirac string in this case is shown in
Fig. 3(d). Similar to Fig. 1(d), the T1 and T2 regions
and BMs are clearly recognizable in Fig. 3(d). The micro-
scopic energy variation corresponds to rims and inner parts
of magnetic elements. Mean energy cost hEDS − ET1i per
microscopic dipole is different from that of macrospin
representation. In the case of 2D-DSI made of 36a × 24a ×
a elements, for example, hEDS − ET1i=spin is of the order
of 0.085w. Multiplying this value by the number of spins in
an element, however, results in T0 ≈ 7.3w for any element
size. Hence, the mean string tension in artificial 2D-DSI
doesn’t change. In artificial 2D-DSI, T0 has to compete
with the shape anisotropy or coercivity Ec. To achieve

FIG. 2. (a, b) Monte Carlo path-time diagrams of stretched
double (a) and multiple DSs (b) at kT ¼ 0.2w. The color scheme
gives the mean strength of DC at the ends of strings. Initial DS
length is 50a. In (a), a negative BM (blue) is fixed, all other
dipoles are free. In (b), all dipoles are free to relax. Numerical
data are fitted (lines) by Eq. (2). Dotted line in (a) and dashed line
in (b) correspond to aBM ¼ T0=2m ≈ 7.3 × 10−3a=MCS2. In (a),
the difference between rðtÞ of BMs and that of free Coulomb
charges is emphasized. In (b), different fronts have different
velocities because of local repulsion. (c) gives a snapshot of the
path-time diagram in (b) at t ¼ 5 MCS. (d) Stray fields (black
arrows) in 2D-DSI (green arrows). Stray fields acting on dipoles
forming BMs exert torque promoting spin flips.
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spontaneous dc current, a condition e−½ðT0r−EcÞ=kT� ≫ 0 has
to be satisfied. Hence, the string tension has to be larger
than Ec and kBT. In many cases, this condition can be
satisfied. An example is given by MC and SD simulations
of the 10 × 10 2D-DSI arrays of Figs. 3(b) and 3(c). The
microscopic dipoles μi ¼ 2 μB within each element have
been coupled by the exchange (J ¼ 10 meV) and dipolar
interaction. In contrast to studies on connected networks
[23], a disconnected 2D-DSI with different element sizes
has been checked. The main conclusion is that the
spontaneous current can be achieved for elements exceed-
ing sizes 6 × 9 × 2 nm at temperatures kBT > 0.25J. At

lower temperatures, the torque due to stray fields is too
small to overcome the local coercivities, and an external
field has to be additionally applied. Figures 3(b) and 3(c)
show two snapshots of a portion of the described array
during the BM movement. Magnetization of the three
bottom elements was pinned. In contrast to the macrospin
picture, the driving stray fields are nonhomogeneous within
a magnetic element. The most probable scenario of
magnetization reversal is the domain wall formation with
its subsequent push out by the stray fields. The magneti-
zation reversal, however, is strongly shape dependent and
has to be systematically investigated.
It would be exciting to use spontaneous BMs movement

for energy [24] and information storage and to measure
T0=2m. The energy can be stored in stretched DSs. The
novelty of energy storage in DSs is twofold. First, a string
carrying energy of LT0 can be stabilized by much smaller
energy of 2T0, because one needs to fix the string ends
only, all other dipoles will be pinned by interactions in the
local energy minimum as seen in Fig. 1(d). Second, the
power P ¼ dE=dt can be tuned geometrically. The dE ¼
LT0 can be stored in one DS of length L or in N parallel
strings of length L=N. The dt is determined by the reversal
time of one element, which is N times shorter in the second
case because of the simultaneous reversal [21]. Hence, long
samples provide us with longer currents of weak power,
while wide short samples deliver short but powerful
currents [21]. The novelty for information storage is the
spontaneous character of the BM motion, which is very
different from that of domain walls.
To check the above predictions, the following experiments

might be performed. Initially, instead of extended arrays,
three- or five-row 2D-DSI patches of different length might
be studied. The 470 × 170 × 3 nm Py islands with a nearest-
neighbor distance of 425 nm [25] would be well suited for
photoemission microscopy or x-ray magnetic circular dichro-
ism experiments, while smaller, e.g., 4 × 2 × 0.5 nm, islands
from harder magnetic materials for magnetic force micros-
copy (MFM) measurements. The proposed configuration is
benchmarked in the mesoscopic experiment of videos
SI5–SI7 [21]. For better controllability, rim islands on one
side might have higher coercivity due to, e.g., higher
anisotropy, larger magnetization, or local magnetic field.
The first act of video SI5 [21] shows that small local fields do
not disturb the ground state. If, however, one end is fixed, a
small local field from an MFM tip, for example, is enough to
form a DS. Alternatively, the DS can be stretched applying
global magnetic field. This process is equivalent to the
charging of a DS with energy E ¼ LT0. After field removal,
the DS might shrink, delivering stored energy (third act of
SI5 [21]). The time-resolved imaging of rðtÞ or time-
resolved measurement of stray fields permits determination
of tension T0=2m and current dρ=dt for given material
parameters. Using the dissipative channel of MFM [26,27],
the energy needed for this process can be estimated. The

FIG. 3. (a) Space-time diagram constructed from six MC
snapshots in 4a × 10a square 2D-DSI with free boundaries.
Solid lines and spheres highlight the time evolution of DSs and
BMs. (b, c) Two snapshots of a portion of DSs in artificial square
2D-DSI consisting of 10 × 10 magnetic elements with free
boundaries. Each element is made of 24 × 36 microscopic
dipoles. Only each fourth dipole is shown for clarity. Different
colors denote different azimuthal orientation of microscopic
dipoles. Large arrows give the mean island magnetization.
(d) Energy profile in the middle of a static DS in artificial
2D-DSI.
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proposed procedure can be repeated for larger 2D-DSI
arrays. Video SI6 [21] shows the process of charging and
discharging in slow motion.
In conclusion, it is predicted that, maximizing the Dirac

string tension, spontaneous magnetic currents can be
achieved. On the basis of this prediction, a device for
energy storage is proposed and realized in a mesoscopic
experimental model. I hope this analysis will encourage
experiments and theoretical investigations on confined
string dynamics in DSI. These investigations will open
broad perspectives relevant to the technology of the future.
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