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We present a theoretical model that allows a fast and accurate evaluation of ionic transport properties of
realistic plasmas spanning from warm and dense to hot and dilute conditions, including mixtures. This is
achieved by combining a recent kinetic theory based on effective interaction potentials with a model for the
equilibrium radial density distribution based on an average atom model and the integral equations theory of
fluids. The model should find broad use in applications where nonideal plasma conditions are traversed,
including inertial confinement fusion, compact astrophysical objects, solar and extrasolar planets, and
numerous present-day high energy density laboratory experiments.
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Progress in a wide range of research frontiers depends
upon a detailed knowledge of the transport properties of
warm and hot dense matter, characterized by densities near
those of solids and temperatures from several to hundreds
of eV. Important examples include the implosion of inertial
confinement fusion (ICF) capsules [1] and the structure and
evolution of giant planets [2,3], exoplanets [4,5], and other
compact bodies such as white dwarf stars [6,7], as well as
many new and future high energy density laboratory
experiments [8,9]. Modeling transport processes in dense
plasmas presents a considerable challenge because of the
combined effects of strong Coulomb coupling of ions and
quantum degeneracy of electrons; these systems are too
dense for standard plasma theories [10] and too hot for
condensed matter theories to apply [11]. Experimental data
are sparse, and, to date, ab initio computer simulations have
been the primary method to calculate transport properties
[12–14]. Although these are often accurate, the approach is
limited by its computational cost. In practice, modeling the
macroscopic evolution of high energy density plasmas
involves hydrodynamic simulations that require transport
coefficients in the form of formulas or tables. Building
tables is often impractical with ab initio simulations,
because many of the systems of interest evolve through
several decades of density and temperature and contain
mixtures of ionic species. An approximate theory that can
predict reasonably accurate transport coefficients at a low
computational cost is highly desirable.
This Letter presents the first theory to obtain fast and

accurate predictions of ionic transport coefficients over a
wide range of physical conditions, including warm and hot
dense matter, as well as mixtures. The model, which treats
the electrons fully quantum mechanically and the ions
classically, is fast to evaluate (the calculation time is
reduced by a few orders of magnitude compared with
ab initio simulations), reduces to the traditional theory in
the ideal plasma limit, and is accurate for effective

Coulomb coupling strengths up to ∼30, thus covering a
wide range of physical conditions. The model results from
the merger of two recent developments: namely, the
effective potential theory (EPT) [15,16], which success-
fully extends the conventional plasma transport theory into
the strongly coupled regime, together with an average atom
model (AA-TCP) that can effectively model the ionic
structure and electronic properties of warm and hot dense
matter [17,18]. Below, the transport theory obtained by
combining these two models is introduced and bench-
marked against molecular dynamics (MD) simulations for
diffusion and viscosity for a range of physical conditions
representative of current research needs. The plasmas
studied include hydrogen, aluminum, and iron, which
are important in ICF research, basic high energy density
plasma experiments, and planets, respectively, as well as
carbon-helium mixtures, which occur in white dwarf stars.
We first recall the main characteristics of the EPT and
AA-TCP theories and explain how they naturally combine
to make an efficient model of transport processes; further
details are given in Supplemental Material [19].
The EPT is based on the Boltzmann kinetic theory of

gases (more precisely, on its extension by Enskog to treat
dense gases). However, instead of using the bare pair
interaction potential to compute the cross section for binary
collisions, an effective potential is used in order to account
for the effect of the surrounding medium on the mutual
interactions between a pair of colliding ions. In a mixture,
an effective potential ϕαβðrÞ is defined for each pair ðα; βÞ
of ionic species. The effective potential is set equal to the
so-called potential of mean force, which corresponds to the
interaction between two ions held a distance r apart when
the surrounding particles of the plasma are canonically
averaged over all configurations; this potential of mean
force is simply related to the ion pair-distribution function
gαβðrÞ; by definition, gαβðrÞ ¼ e−ϕαβðrÞ=kBT , where T is
the temperature [24]. In addition, following Enskog, the
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Boltzmann collision operator is corrected by a collision
probability enhancement factor that accounts for the
exclusion radius r� surrounding each ion due to the strong
repulsion at short range. In practice, r� is chosen to
maximize the accuracy of the theory, leading to the
criterion gαβðr�Þ ¼ 0.87 [16]. The transport coefficients
are then obtained by substituting the effective potentials in
the well-known Chapman-Enskog formulas that result from
the solution of the Boltzmann equation with the Enskog
correction. Thus, the EPT offers access to the transport
properties from the knowledge of only the pair-distribution
functions, the same static quantities that are typically used
to calculate the thermodynamic properties. By comparing
with MD simulations of the idealized one-component
plasma model, the EPT was previously shown to success-
fully extend the binary collision approach well into the
strongly coupled regime (up to Coulomb coupling param-
eters Γ ∼ 30).
In fact, and this is an important element of the present

work, the applicability of the EPT theory is not limited to
simple models like the one-component plasma. This is
demonstrated in Fig. 1 by a comparison between accurate
quantummolecular dynamic simulations [14,25] (see below)
and the EPT theory for the self-diffusion coefficient of
deuterium plasmas at 4.04 g cm−3 and temperatures ranging
from 1 to 80 eV. Under these conditions, deuterium is fully
ionized and the effective ion coupling parameter ranges from
Γeff ¼ 9.5 to 0.25 (as determined from the first peak of the
pair-distribution function [26]). The corresponding electron

degeneracy parameter ranges from kBT=EF ¼ 0.024 to 1.9,
where EF is the Fermi energy. Here the EPT was evaluated
using the ion pair-distribution function gðrÞ extracted from
the quantum simulations. Both calculations are in excellent
agreement, with the EPT deviating from the latter by at most
6%. On the other hand, the traditional Landau-Spitzer
formula completely breaks down at temperatures below
40 eV (Γeff ¼ 0.6). The current standard for extending
the Landau-Spitzer theory to stronger coupling was devel-
oped by Paquette et al. [27]. Figure 1 shows that the EPT
is much more accurate than this for temperatures below
approximately 50 eV. This shows that the EPT gives very
good results for realistic systems when an accurate pair-
distribution function is available. However, each of these
data points required a computationally costly calculation of
the pair-distribution function [28]. In order for the EPT
theory to be useful from a practical standpoint, a tool that can
promptly generate accurate pair-distribution functions for
realistic dense plasmas is required.
The recent AA-TCP model [17,18] provides an effective

solution to this problem. This is an all-electron model that
has no adjustable parameters; the only inputs are the
chemical species (nuclear charges, atomic masses, number
fractions), the plasma temperature, and the mass density.
Ionic mixtures can be handled as well as pure plasmas
without additional approximations. Briefly, the model
calculates the electronic structure of a (spherically sym-
metric) central ion and of the surrounding valence (screen-
ing) electrons using finite-temperature density functional
theory where electrons are subject to both the central
nuclear potential and the potential of surrounding ions.
When coupled with the theory of fluids, the electron density
profile around a nucleus gives ion-ion pair potentials
VαβðrÞ and self-consistent ionic pair-distribution functions
gαβðrÞ (see Supplemental Material [19]). Those gαβðrÞ have
been shown to be in excellent agreement with ab initio
simulations for a wide range of elements, temperatures, and
densities [17,18,29,30] and are obtained at a fraction of the
computational cost. These accurate gαβðrÞ can be used as
input to the EPT theory to quickly and accurately evaluate
the ionic transport coefficients of plasmas simply by
specifying the density, temperature, and material compo-
sition. The gαβðrÞ are calculated up to 15–25 ion sphere
radii to ensure the convergence of the EPT calculation.
Below, the resulting model, referred to as EPTþ AA, is
benchmarked against MD simulations for a range of
relevant conditions.
Two kinds of MD simulations are performed, namely,

quantum orbital-free MD (QOFMD) and pseudo-atom
MD (PAMD). QOFMD is representative of the state of the
art in simulations of dense plasmas and provides reference
values of transport properties, while PAMD is used here
to demonstrate the internal consistency of the present
model. In QOFMD, both electrons and ions are evolved
in time within the Born-Oppenheimer approximation.

FIG. 1. Coefficient of self-diffusion of deuterium plasmas at
4.04 g cm−3 and temperatures in the range 1–80 eV. The EPT
results, which were here evaluated using the pair-distribution
functions gðrÞ calculated with the QOFMD simulations, are in
excellent agreement with the latter, while the traditional weak-
coupling (Landau-Spitzer; red dotted line) plasma theory breaks
down at low temperatures. The model of Paquette et al. [27] (blue
dashed line) is widely used in stellar astrophysics.
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Ions propagate classically according to Newton’s equations,
while conduction electrons are described with the finite-
temperature density functional theory using either the
accurate orbital-free method of Refs. [14,25] or the high-
temperature, high-density limit, namely, the Thomas-Fermi
(TF) approximation (we use the latter when QOFMD is
numerically impractical). In PAMD [30], the ions alone are
propagated in time and interact through pair potentials
VαβðrÞ in a classical MD simulation. The VαβðrÞ are outputs
of the AA-TCP model and describe the mutual ion inter-
actions screened by the valence electrons. By construction,
PAMD simulations reproduce the pair-distribution functions
gαβðrÞ of AA-TCP to high accuracy, and they give access to
the ionic transport properties. Given the pair distribution gαβ
and corresponding potential Vαβ from the AA-TCP model,
we compare below the transport coefficients obtained from
the EPTþ AA model using gαβ to those extracted from a
PAMD simulation using Vαβ. These examples further
validate the EPT for dense plasmas modeled with realistic
potentials. Details of the MD simulations are given in
Supplemental Material [19].
For practical and fundamental reasons, aluminum is

often used in experiments on warm dense matter
[31,32]. While it is usually regarded as a simple metal
from the condensed matter point of view, warm dense
aluminum is more complex and exhibits temperature and
pressure ionization, both captured by the AA-TCP model.
Figure 2 shows the self-diffusion coefficient of aluminum
plasmas at solid density and 10 times compressed for

temperatures from 1 to 500 eV. Under such conditions,
the average ionization state varies from Z̄ ¼ 3 to ∼12, the
effective coupling strength from Γeff ∼ 72 to ∼2, and the
electron degeneracy parameter from kBT=EF ¼ 0.05 to 17.
The EPTþ AA model is in excellent agreement with the
PAMD simulations for temperatures corresponding to
Γeff < 30. The diffusion coefficient calculated with EPT
is within 2% of the value from the MD simulations, which
reflects the statistical uncertainty of the latter. At lower
temperatures where Γeff > 30 (e.g., 10 eV at 27 g cm−3),
the EPT results rise above the MD value, as expected [16].
The present model gives self-diffusion coefficients that
reproduce those from QOFMD and TFMD simulations of
Al plasmas to better than 8% for 2 < T < 500 eV at solid
density [30].
The intense experimental campaign to understand the

implosion of ICF capsules at the National Ignition Facility
has brought increased scrutiny to the transport properties in
the warm and hot dense matter created during the com-
pression phase. Hydrogen (more precisely, its isotopes
deuterium and tritium) is an essential element of these
experiments. Figure 3 shows the coefficients of self-
diffusion and of shear viscosity of hydrogen plasmas at
8 g cm−3 for T ¼ 1–100 eV. Under these conditions, our
model indicates that hydrogen is fully ionized, the effective
Coulomb coupling parameter ranges from Γeff ¼ 21 to 0.4,
and the electron degeneracy parameter ranges from
kBT=EF ¼ 0.01 to 1. The EPTþ AA diffusion coefficients
deviate from the PAMD values by 3%–/12% and from the
QOFMD values by 9%–16%. The coefficient of shear
viscosity η agrees even better for T ≳ 5 eV (Γeff ≲ 8) as the

FIG. 2. Self-diffusion coefficient of aluminum plasmas at solid
density (2.7 g cm−3 upper curves) and 10 times compressed
(2.7 g cm−3; lower curves). The PAMD results agree very well
with the ab initio simulations (QOFMD and TFMD at higher
temperatures), which shows that the pair potential from the
AA-TCP model is accurate. Using this same potential, the EPT
reproduces the PAMD very closely except for very strong plasma
coupling.

FIG. 3. Coefficients of self-diffusion D (upper blue curves) and
shear viscosity η (lower red curves) of hydrogen plasmas at
8 g cm−3. Both the PAMD and EPT results are in very good
agreement with the ab initio QOFMD values. The larger devia-
tions occur at low temperatures where the plasma is very strongly
coupled.
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differences between EPTand both the PAMD and QOFMD
are everywhere within 6%.
Iron is a key constituent of the core of terrestrial and

gaseous giant planets in our Solar System and in other
planetary systems. The cores of young, massive gaseous
planets can reach temperatures of several eV [5]. Figure 4
shows the self-diffusion coefficient and shear viscosity
coefficient of iron plasmas at solid density and T ¼ 5 to
104 eV. These calculations are based on the Thomas-Fermi
density functional for the kinetic energy of the electrons.
Under such conditions, the average ionization state varies
from Z̄ ¼ 8 to ∼18.4, the effective coupling strength from
Γeff ¼ 39 to 0.6, and the electron degeneracy parameter from
kBT=EF ¼ 0.4 to 200. Again, for the self-diffusivity, the
EPTþ AA is in very good agreement with both the PAMD
and QOFMD simulations (here within the Thomas-Fermi
approximation); for the viscosity, the EPT results depart
from theMD results below T ∼ 100 eV, as expected [16,33].
Most systems of interest involve mixtures of plasmas

rather than the pure elements we have considered so far.
As an example of the general applicability of this
approach, we consider the coefficient of interdiffusion
[24] in a warm dense plasma mixture of carbon and
helium, which occurs at the core-envelope boundary of
white dwarf stars. We recall that D12 measures how
concentration inhomogeneities spread to uniformity
[24]. This process is responsible for the carbon “pollu-
tion” at the surface of a number of white dwarf stars that
would otherwise have a pure helium composition [34].
The EPT theory presented in Refs. [15,16] is readily
extended to mixtures using a multicomponent virial
expansion [19,35,36]; see also Supplemental Material
[19] and Ref. [37] for other benchmarks. Figure 5 shows

the interdiffusion coefficient of 60% C–40% He mixtures
(by number) at 10 g cm−3 and for temperatures from 8 to
300 eV. Again, the EPTþ AA is in remarkable agreement
with the PAMD simulations, with differences that can
reach 11% but typically remain below 3%.
In conclusion, we have presented a practical model to

efficiently and accurately evaluate the transport coefficients
of warm and hot dense plasmas where traditional theory
breaks down. The model combines the effective potential
transport theory, which simply relates the transport coef-
ficients to the pair-distribution functions, and an efficient
average atom model, which accurately determines these
functions for given plasma constituents and physical
conditions. Such a model will be useful to many areas
of high energy density physics and astrophysics, where
current uncertainties in the transport coefficients hamper
understanding of these systems and their reliable modeling.
It has broad applicability to plasmas that are weakly to
strongly coupled and to plasma mixtures. Typically, this
model gives diffusion coefficients and shear viscosities
within 10% of the ab initio values, which is excellent
considering the uncertainties in the latter. In addition to its
computational efficiency, it offers the advantages of being
free of the statistical noise inherent to evaluating transport
coefficients from the Kubo relations applied to MD
simulations, it accounts for electronic shell structure
through the average atom model, and it covers both the
warm and hot dense matter regimes with a single physical
model. The combination of the AA-TCP, PAMD, and EPT
models provides a path to self-consistent calculation of the
electronic structure, ionic charge, the equation of state, and
the ionic transport properties of dense plasmas. Finally, the
present work suggests that an experimental measurement of

FIG. 4. Coefficient of self-diffusion D (upper blue curves) and
of shear viscosity η (lower red curves) of iron plasmas at
7.87 g cm−3. These calculations are based on the Thomas-Fermi
model of the electrons.

FIG. 5. Interdiffusion coefficient D12 of C=He mixtures (60%
C, 40% He by number) at 10 g cm−3. The agreement between
EPTþ AA and PAMD is excellent, especially considering the
level of noise in the latter calculations (�3%).
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the pair-distribution functions or the structure factors could,
in principle, be used to infer ionic transport properties.
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