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We present a coherent optical method for wavelength-resolution imaging of moving objects hidden
within thick randomly scattering media. Spatial speckle intensity correlations as a function of object
position are shown to provide access to the spatially dependent dielectric constant of the moving object.
This speckle correlation imaging method yields field-based information previously inaccessible in heavily
scattering environments. Proof of concept experimental results show excellent agreement with the theory.
This new imaging approach will be valuable in high resolution imaging in tissue and other scattering
environments where natural motion occurs or the object position can be controlled.
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The ability to image through scattering media with light
has garnered immense interest throughout the last several
years [1–7]. However, randomly scattering inhomogene-
ities in the imaging environment interact with the object of
interest and the illumination source and, with sufficient
scatter, can completely obscure the object [8]. We provide a
new method to coherently image a moving object hidden in
heavily scattering media.
The memory effect permits imaging through thin ran-

domly scattering media [3,9,10]. Also, using wave front
control, it has been possible to focus through a scattering
domain [6], hinting at the future promise with, for instance,
ultrasonic guide stars [11]. Wave front control has been
combined with the memory effect to image through thin
scattering media [3,12,13]. Also, measurement of the trans-
missionmatrix for the randommediumprovides information
that can allow for imaging through random scatter [14], but
this requires suitable characterization data.
A number of localization methods have been developed.

For example, with a stationary point scatterer of interest
in a background of moving scatters, the average intensity
transmission can yield the position of the stationary
scatterer, and transverse localization information exists in
the average of the difference of speckle patterns (with and
without the stationary scatterer) [15]. Localization can also
be accomplished in a diffusion framework, with weakly
interacting scatterers [16,17]. Control of the coherence in
speckle pattern difference images can reveal the presence
of hidden inhomogeneities [18].
Sophisticated imaging methods have been developed for

diffuse optical tomography to achieve geometrical features
roughly defined by the transport length l� [19,20]. Greater
accuracy can be achieved with high energy photons, where
ballistic information (that allows back projection, for
instance) provides tracking data in x-ray phase contrast
imaging [21] with the use of geometrical optics [22].
However, beyond the physics related to multiply scattering
light, the use of visible and infrared light can be desirable to

allow various forms of spectroscopy, and for cost, safety,
and technology reasons.
The aforementioned and related prior work leads to the

position that imaging with wavelength scale resolution in
multiply scattering media has been limited to the degree of
scatter where wave front control (with a guide star) or the
memory effect can be applied. We show a means to achieve
high resolution optical images with multiply scattered
coherent light through essentially arbitrarily thick scatter-
ing media, limited only by signal-to-noise requirements
at the detector, when speckle images are captured as a
function of the object position.
We demonstrate a method for imaging moving objects

embedded within thick, randomly scattering media that
applies provided there is enough scatter to have randomized
fields that are zero-mean circular Gaussian [23]. In this
scattering regime, our method is not limited by the thickness
of the scattering medium, making it complementary to
existing speckle imaging approaches [24]. The approach,
illustrated in Fig. 1(a), provides a description of the spatial
speckle intensity correlation as a function of object position
for a moving object hidden inside of a scattering medium,
and allows for the moving hidden object to be imaged. We
describe the environment as a static random scattering
medium with an embedded object at some position inside
the random medium. However, in reality, the randomly
scattering medium only needs to be static during a particular
span of time.Wedefine the normalized intensity for polarized
light exiting a random medium as ~I ¼ ðI − hIiÞ=σI , where
hIi is the mean intensity and σI is the standard deviation of
the intensity. The speckle contrast ratio [8], σI=hIi, is unity
for polarized coherent light and fully developed speckle
statistics. In this case, the intensity statistics are negative exp-
onential and the underlying field statistics, assuming weakly
interacting scatterers, are zero-mean circular Gaussian, a
property of the field statistics that we will use.
We write the spatial speckle intensity correlation as

h~Iðr; r0Þ~Iðr; r0 þ Δr0Þi, where ~Iðr; r0Þ is the normalized
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intensity at position rwith anobject embedded inside the ran-
dom scattering medium at a reference position described by
r0, and the object’smovement is described byΔr0. Assuming
zero-mean circular Gaussian statistics, we can express the
normalized intensity correlation in terms of the normalized
field correlation using a moment theorem as [25]

h~Iðr;r0Þ~Iðr;r0þΔr0Þi¼ jh ~Eðr;r0Þ ~E�ðr;r0þΔr0Þij2; ð1Þ

where ~E ¼ E=σE is the normalized scalar field and σE is
the standard deviation of the field. With zero-mean circular
Gaussian fields, σE ¼ hjEj2i1=2 ¼ hIi1=2 ¼ ffiffiffiffiffi

σI
p

[25,26].
In developing an expression for the imaging problem,

we use a scalar wave equation to describe the interaction of
the speckled optical field with the object of interest (that is
being translated). This corresponds to the physical optics
approximation, so that the vector field problem associated
with the moving scatterer can be treated by the scalar wave
equation. This treatment can be generalized for an arbitrary
sized object through the use of the vector wave equation.
We write the total field Eðr; r0Þ as

Eðr; r0Þ ¼ EiðrÞ þ Esðr; r0Þ; ð2Þ

where EiðrÞ is the field in the scattering medium without
the object and Esðr; r0Þ is the field scattered by the object.

The wave equation for the electric field, assuming constant
permeability, can be written as

∇2½EiðrÞ þ Esðr; r0Þ� þ k20ϵiðrÞ½EiðrÞ þ Esðr; r0Þ�
þ k20ϵsðr; r0Þ½EiðrÞ þ Esðr; r0Þ� ¼ 0; ð3Þ

where k20 ¼ ð2π=λ0Þ2, λ0 is the free-space wavelength, ϵiðrÞ
is the spatially dependent dielectric constant of the random
medium, and ϵsðr; r0Þ is the difference with and without the
embedded object centered at r0. Knowing that ∇2EiðrÞþ
k20ϵiðrÞEiðrÞ ¼ 0, moving all of the terms containing
ϵsðr; r0Þ to the right hand side, and using (2), we write (3) as
∇2Esðr;r0Þþk20ϵiðrÞEsðr;r0Þ¼−k20ϵsðr;r0ÞEðr;r0Þ: ð4Þ
Using the Green’s function solution to (4), Gðr0; r; r0Þ, we
write the scattered field as

Esðr; r0Þ ¼
Z

dr0Eðr0; r0Þk20ϵsðr0; r0ÞGðr0; r; r0Þ: ð5Þ

With (5), the total field at some point r becomes

Eðr;r0Þ¼EiðrÞþk20

Z
dr0Eðr0;r0Þϵsðr0;r0ÞGðr0;r;r0Þ: ð6Þ

We use (6) to write the electric field correlation over
object position, at detector position rd, as

hEðrd;r0ÞE�ðrd;r0þΔr0Þi¼
��

EiðrdÞþk20

Z
dr0Eðr0;r0Þϵsðr0;r0ÞGðr0;rd;r0Þ

�

×
�
E�
i ðrdÞþk20

Z
dr00E�ðr00;r0þΔr0Þϵ�sðr00 þΔr0;r0þΔr0ÞG�ðr00;rd;r0þΔr0Þ

��
: ð7Þ

At this point, we recognize the statistical independence of the various terms in (7), such as the field without the scattering
object and the scattered field, and use this to separate the averaging. In addition, the final term of the expansion of (7) is
reduced to a single integral using the assumption that the contributions to the correlation occur only over the joint support
[27], giving

hEðrd; r0ÞE�ðrd; r0 þ Δr0Þi ¼ hjEiðrdÞj2i

þ k20hEiðrdÞi
�Z

dr00E�ðr00; r0 þ Δr0Þϵ�sðr00 þ Δr0; r0 þ Δr0ÞG�ðr00; rd; r0 þ Δr0Þ
�

þ k20hE�
i ðrdÞi

�Z
dr0Eðr0; r0Þϵsðr0; r0ÞGðr0; rd; r0Þ

�

þ k40

Z
dr0hEðr0; r0ÞE�ðr0; r0 þ Δr0ÞGðr0; rd; r0ÞG�ðr0; rd; r0 þ Δr0Þi

× ϵsðr0; r0Þϵ�sðr0 þ Δr0; r0 þ Δr0Þ: ð8Þ

The second and third terms in (8) are zero because hEiðrdÞi has zero mean. These observations allow us to write (8) as

hEðrd; r0ÞE�ðrd; r0 þ Δr0Þi ¼ hjEiðrdÞj2i þ k40

Z
dr0hEðr0; r0ÞE�ðr0; r0 þ Δr0ÞGðr0; rd; r0ÞG�ðr0; rd; r0 þ Δr0Þi

× ϵsðr0; r0Þϵ�sðr0 þ Δr0; r0 þ Δr0Þ: ð9Þ
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With sufficient scatter, the average of the field and Green’s function terms in the integral in (9) can be reduced to a slowly
varying function of space, C. We therefore write (9) as

hEðrd; r0ÞE�ðrd; r0 þ Δr0Þi ¼hjEiðrdÞj2i þ
Z

dr0ϵsðr0; r0Þϵ�sðr0 þ Δr0; r0 þ Δr0ÞC; ð10Þ

with

C ¼ k40hEðr0; r0ÞE�ðr0; r0 þ Δr0ÞGðr0; rd; r0ÞG�ðr0; rd; r0 þ Δr0Þi: ð11Þ

With C in (10) constant, the statistics are stationary over
object position, such that the field mean and variance are
independent of embedded object position r0.
The field variance at the detector, σ2E ¼ hjEj2i, with E

from (6), becomes

σ2E¼
���
�
�EiðrdÞþk20

Z
dr0Eðr0;r0Þϵsðr0;r0ÞGðr0;rd;r0Þ

�
�
�
�
2
�
:

ð12Þ

Expansion of the terms in (12) leads to

σ2E ¼ hjEiðrdÞj2i

þ k20hEiðrdÞi
�Z

dr0E�ðr0; r0Þϵ�sðr0; r0ÞG�ðr0;rd; r0Þ
�

þ k20hE�
i ðrdÞi

�Z
dr0Eðr0; r0Þϵsðr0;r0ÞGðr0;rd; r0Þ

�

þ k40

�Z
dr0Eðr0; r0Þϵsðr0; r0ÞGðr0; rd;r0Þ

×
Z

dr00E�ðr00; r0Þϵ�sðr00; r0ÞG�ðr00; rd; r0Þ
�
: ð13Þ

Using the same joint support argument thatwas used to arrive
at (9), recognizing that the middle two terms in (13) are zero,
due to hEiðrdÞi having zero mean, and again treating the
averageover the field andGreen’s function terms tobe slowly
varying and hence constant, (13) is reduced to

σ2E ¼hjEiðrdÞj2i þ C0
Z

dr0jϵsðr0; r0Þj2; ð14Þ

where C0 is a constant that is set equal to C because (11) is
assumed to be independent of object position.
The normalized electric field autocorrelation, at detector

position rd, is written as

h ~Eðrd; r0Þ ~E�ðrd; r0 þ Δr0Þi

¼ 1

σ2E
hEðrd; r0ÞE�ðrd; r0 þ Δr0Þi: ð15Þ

We use (9) and (14) in (15) to obtain an expression for the
normalized electric field spatial correlation in terms of the
object’s autocorrelation as

h ~Eðrd; r0Þ ~E�ðrd; r0 þ Δr0Þi

¼ hjEiðrdÞj2i þ C
R
dr0ϵsðr0; r0Þϵ�sðr0 þ Δr0; r0 þ Δr0Þ

hjEiðrdÞj2i þ C
R
dr0jϵsðr0; r0Þj2

:

ð16Þ
Equation (16) shows that information about the object is

available in the measured speckle intensity correlation,
obtained from (15) using a moment theorem [25]. In the
case of no embedded moving object, the second terms in
both the numerator and the denominator of (16) are zero,
leaving us with, as expected, a constant correlation of 1.
The mean intensity without the object gives hjEiðrdÞj2i, and
this can be obtained using a model or a prior measurement
without the object. The unknowns in (16) are then two
constants, C, as given in (11) and constant because of the
heavy scatter in relation to the object motion, and

(a)

(b)

FIG. 1. (a) Concept for imaging a moving object hidden within
a scattering medium by collecting speckle intensity images as a
function of object position. (b) Experiment with an 850 nm laser
illuminating a pair of scattering slabs. An object was placed
between the slabs and scanned using a set of linear stages.
Speckle images were collected at each object position using a 4f
spatial filter, magnifying optics, and a polarizer.
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R
dr0jϵsðr0; r0Þj2, and the autocorrelation of the object’s

spatially dependent dielectric constant. With sufficient
measurement data, the two constants and the object
(defined by its dielectric constant) can in principle be
determined. We consider a special case to simplify and
demonstrate the result in (16).
With a strongly interacting moving embedded object, the

second terms in the numerator and denominator in (16) will
be much larger than the first term. The resulting complete
decorrelation of the speckle image therefore occurs when
the difference in dielectric constant of the object and the
background, ϵs, is significant. When the second term is
sufficiently large, (16) can be reduced to

h ~Eðrd; r0Þ ~E�ðrd; r0 þ Δr0Þi

≈
R
dr0ϵsðr0; r0Þϵ�sðr0 þ Δr0; r0 þ Δr0ÞR

dr0jϵsðr0; r0Þj2
: ð17Þ

We use (17) in (1) to write the normalized intensity
correlation in terms of the field correlation as

h~Iðrd; r0Þ~Iðrd; r0 þ Δr0Þi

≈
j R dr0ϵsðr0; r0Þϵ�sðr0 þ Δr0; r0 þ Δr0Þj2

j R dr0jϵsðr0; r0Þj2j2
: ð18Þ

Equation (18) describes the spatial speckle correlation in
terms of the normalized autocorrelation of an embedded
moving object, where the object is described in terms of
its dielectric constant. The averaging can be assumed to
be over the scatterer configuration or, due to the statistical
independence of the speckle spots, over detectors at
different points, such as pixels in a CCD camera. The
use of a CCD camera allows a very large number of
independent measurements to be made simultaneously
while the embedded object moves.
An inversion of (18) allows for the imaging of moving

objects hidden within scattering media in terms of the
object’s optical properties. We emphasize that the reso-
lution of the image is then in principle about one wave-
length, dictated by the use of propagating waves. This
inversion requires a phase retrieval to determine ϵs from its
correlation. This phase retrieval could be achieved through
various means, such as an iterative phase retrieval where
known constraints are applied in the real and Fourier
domains [28] or even through the use of the bispectral
phase obtained from a third-order correlation over space as
a dual variable application of previous frequency correla-
tions [29,30].
Equation (18) was experimentally verified for a special

case using the setup shown in Fig. 1(b). An 850 nm laser
diode with a linewidth less than 10 MHz illuminated a
3 mm thick slab placed between the laser source and the
object and a 9 mm thick randomly scattering slab was
placed between the camera and the object of interest. The

two slabs were separated by 3.5 cm. Both slabs, clear
acrylic with embedded 50 nm diameter TiO2 particles,
had a reduced scattering coefficient ðμ0sÞ, an inverse
measure of the mean free path, of 4 cm−1. A 4f spatial
filter and magnifying lens were used to control the size of
the speckle pattern imaged by a CCD camera. The object of
interest was a circular hole in an absorbing sheet. The hole
was moved in the plane between the scattering slabs and
speckle images were taken as a function of position. The
imaging arrangement resulted in a spot about 1 mm in
diameter on the back of the scattering medium being
imaged to the camera, and the heavy scatter resulted in
the measured mean intensity being independent of scan
position. These speckle images were then used to calculate
the spatial speckle intensity correlation as a function of
object position. The data from each of the 480 000 pixels
were averaged to form an estimate of the spatial speckle
correlation. The experimental results for 500 and 1000 μm
diameter circular apertures along with the expected corre-
lation using (18) [assuming that ϵsðr; r0Þ was zero at the
hole and large and imaginary everywhere else] are shown in
Fig. 2(a). Excellent agreement between the experimental
results and theory is shown, forming a strong basis for the
validity of (18). Note that l� ¼ 2.5 mm for this scattering
medium and that the distance scale in Fig. 2(a) makes it
clear the accuracy of the model is very high relative to l�.
We used measured speckle images and reconstructed an
image for the hidden 500 μm diameter aperture with the

(a)

(b)

FIG. 2. (a) Spatial speckle intensity correlation for a 1000 and a
500 μm diameter circular aperture placed between two scattering
slabs, a 3 mm thick slab between the laser and aperture, and a
9 mm thick slab between the aperture and camera, with
μ0s ¼ 4 cm−1. Our theoretical result for the correlation (18)
matches very well to the experimental results. (b) Reconstructed
image of the hidden 500 μm circular aperture using the exper-
imental intensity correlation data over object position.
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model described in (18), and obtained the result shown in
Fig. 2(b). Because the discrete sampling of the correlation
was quite coarse in the experiment, we selected zero
crossings from simulated data in the reconstruction. The
Fourier domain data were filtered using a 2D Hamming
window before the final inverse Fourier transform to arrive
at the spatial image shown.
We investigated a set of square cylindrical scattering

rods, 8 mm on each side, that were scanned between the
same two scattering slabs [3 mm thick on the source side
and 9 mm on the detector side, referring to Fig. 1(b), with
μ0s ¼ 4 cm−1], with camera intensity images captured at
each scan position. One rod had the same scattering
properties as the slabs, one had a larger reduced scattering
coefficient of μ0s ¼ 14 cm−1, and the other was an absorb-
ing black rod. The rods were moved a total distance of
5 mm and speckle images were taken every 40 μm. An
additional twenty images were taken at 0.1 μm steps. The
normalized intensity correlations were calculated from
the measured data and the results are shown in
Figs. 3(a) and 3(b). The long range correlations in
Fig. 3(a) go to zero at 8 mm, corresponding to the moving
object’s size. The short range results in Fig. 3(b) decorrelate
on the far-subwavelength scale. This rapid decrease is due
to edge movement, and the differences in the correlations
are associated with the microstructure in the rods. The
black rod effectively lets no light pass, so its rough surface
movement is the primary contributor to the small decrease,

while the μ0s ¼ 14 cm−1 and μ0s ¼ 4 cm−1 rods are increas-
ingly more transmissive, leading to a more significant
wavelength-scale decorrelation due to the embedded scat-
terers. On both length scales, the scatter from the object
dictates the decorrelation rate. These correlations are
independent of the scattering background because the
scatter is heavy enough that the mean intensity measured
is independent of object motion over the range used in these
experiments. Despite each rod having the same physical
dimensions, the spatial speckle correlations are clearly
different. This allows us to not only determine that there
is an object moving between the slabs, but also to identify
the object. For example, these correlations could be used in
the classification and identification of objects moving
through naturally occurring scattering environments such
as tissue, clouds, or other cluttered background. A library
of object correlations could be assembled which would
allow for the rapid identification of objects without requir-
ing computationally expensive inversions.
In the imaging method we have described based on the

inversion of (18) with measured intensity data as a function
of object position, the movement of the object does not
necessarily have to be controlled and can be due to natural
motion. The effective step size would then be determined
by the object’s velocity and image acquisition time. If the
object’s motion is not known, then an analogous problem
can be described where, assuming that the object is known,
the object’s motion can be determined and tracked. The
speckle intensity correlation can be rewritten in terms of the
object’s time dependent velocity vðtÞ and time t, where
r ¼ r0 þ Δr ¼ r0 þ

R t1
t0 vðtÞdt. This allows for sensing and

tracking of hidden objects. Alternatively, if the object’s
velocity is considered uniform over a time frame of interest,
the resulting correlation could be used to identify the
object. We should note that such information related to
correlations over object position is distinct from the
temporal correlations related to diffusing-wave spectros-
copy [31], where a large number of scatterers are producing
the decorrelation.
We have presented a theory that allows for imaging

(through the inversion of the spatial speckle correlation)
moving objects embedded within scattering media at
wavelength resolution. This allows for new sensing and
imaging opportunities at wavelengths and in scattering
regimes that were previously inaccessible. The use of
speckle images and various types of correlations, such as
the spatial correlations presented here alongside frequency
and temporal correlations [3–5,30,32], comprise a powerful
set of tools for the analysis of scattering environments and
the ability to sense, track, and image in randomly scattering
media. In tissue, blood cells or contrast agents in vessels
could move quickly relative to surrounding tissue that
dominates the scatter, conforming to the arrangement
assumed. Another relevant situation is a moving object
under sea ice or snow, with both the light source and

(a)

(b)

FIG. 3. Speckle correlations measured through a total of 12 mm
of scattering material with μ0s ¼ 4 cm−1, a 3 mm thick slab
between the rod and the laser and a 9 mm slab between the object
and the camera, for three square rods, 8 mm on each side:
μ0s ¼ 4 cm−1, μ0s ¼ 14 cm−1, and a black absorbing rod. The
spatial speckle correlation is able to clearly show their movement
and distinguish them one from another. (a) For large movement,
the correlation corresponds to the physical size of the objects.
(b) For wavelength-scale movement, the decorrelation is pri-
marily due to the microstructure of the embedded scatterers.
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detector above. The work should also impact imaging in
various aerosols. Our method applies across the electro-
magnetic spectrum and even for other wave-based imaging
methods where there is vulnerability to random scatter. All
of these applications could require methods that can
compensate for the subject of interest being embedded
inside of a thick scattering environment.

This work was supported by the National Science
Foundation (NSF) under Grants No. 1028610 and
No. 1218909.
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