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We produce the first concrete evidence that violation of the weak cosmic censorship conjecture can occur
in asymptotically flat spaces of five dimensions by numerically evolving perturbed black rings. For certain
thin rings, we identify a new, elastic-type instability dominating the evolution, causing the system to settle
to a spherical black hole. However, for sufficiently thin rings the Gregory-Laflamme mode is dominant, and
the instability unfolds similarly to that of black strings, where the horizon develops a structure of bulges
connected by necks which become ever thinner over time.
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Introduction.—Black holes are amongst the most impor-
tant solutions of the Einstein equations. Despite their
simplicity, they capture some of the most fundamental
aspects of the theory. The black holes of general relativity
also play a key role in astrophysics, in particular as a
description of the compact dark objects at the center of
galaxies. This relies on the assumption that they are
nonlinearly stable to small perturbations. Although the full
nonlinear stability of the Kerr solution [1] has not been
rigorously proven, there is good evidence that it is indeed
stable [2–5].
The situation is markedly different in higher dimensions,

where black holes can be dynamically unstable to gravi-
tational perturbations. This was first shown by Gregory and
Laflamme [6] in the case of black strings and black p-
branes. Their result was later generalized to boosted black
strings [7]. In a remarkable paper [8], Lehner and Pretorius
used numerical relativity techniques to study the nonlinear
evolution of the Gregory-Laflamme (GL) instability of the
five-dimensional black string. They found that the insta-
bility unfolds in a self-similar process which gives rise to a
sequence of black hole “bulges” connected by black strings
which become ever thinner over time. Furthermore, they
provided convincing evidence that this process would lead
to these thin strings completely pinching off within finite
time. This result was interpreted as evidence for a violation
of the weak cosmic censorship conjecture (WCC) [9,10] in
spacetimes with compact extra dimensions.
Another novel aspect of higher dimensional black hole

physics is that horizons can have nonspherical topologies,
even in asymptotically flat spaces. The five-dimensional
black ring of Emparan and Reall [11,12] is the first
example. This is a stationary solution of the vacuum
Einstein equations with horizon topology S1 × S2. The
S1 of the ring is a contractible circle that is stabilized by
the centrifugal force provided by the rotation. In terms of
the standard dimensionless “thickness” parameter ν [12],

black rings can be classified as either “thin” ð0 < ν < 0.5Þ
or “fat” ð0.5 < ν < 1Þ. This thickness parameter describes
the relative sizes between the S1 and the S2 of the ring. Fat
rings are known to be unstable under radial perturbations
[13,14]. Very recently, thin rings have been shown to be
linearly subject to a GL-like instability [15,16]. Given the
similarities between very thin black rings and boosted black
strings, it is plausible that the nonlinear evolution of the GL
instability on thin rings would proceed in a similar manner
to that on black strings, thus leading to a violation of WCC
in asymptotically flat spaces. This possibility has been
contemplated in the past [13,15,16]. Arguably, the reso-
lution of WCC is one of the greatest open problems in
classical general relativity, as it directly affects the predict-
ability of the theory.
In this Letter, we report on the end state of black ring

instabilities through fully nonlinear, numerical evolution.
For very fat rings, the dominant instability is the axisym-
metric (“radial”) mode found in Ref. [14]. Rings with 0.2≲
ν≲ 0.6 are unstable under a new type of nonaxisymmetric
instability which deforms the shape of the ring without
substantially changing its thickness. In analogy with
blackfolds [17], we call it an elastic mode. In these two
regimes, the end point of the instability is the topologically
spherical Myers-Perry (MP) black hole. On the other
hand, for very thin rings ðν≲ 0.15Þ the GL instability
dominates. Our main focus here will be on thin rings, where
our results suggest that the WCC does not hold in the
neighborhood of sufficiently thin rings. A more detailed
discussion of our results for fatter rings, and a comparison
of different angular perturbation modes, will be presented
elsewhere [18].
Numerical approach.—We use the CCZ4 formulation

of the five-dimensional Einstein vacuum equations [19,20]
in Cartesian coordinates ðx; y; z; wÞ, with the redefinition
of the damping parameter κ1 → κ1=α, where α is the
lapse [21]. We choose κ1 ¼ 0.1 and κ2 ¼ 0. We have
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experimented with other values, but the results do not
change. We evolve perturbations of singly spinning black
rings which only break the Uð1Þ symmetry in the x − y
rotational plane. The remaining Uð1Þ symmetry in the
orthogonal z − w plane is exploited to dimensionally
reduce the CCZ4 equations to (3þ 1)-dimensions using
the modified cartoon method [22,23]. We do not expect that
breaking this orthogonalUð1Þ symmetry will be relevant in
the context of this work.
As initial data, we start with the stationary ring of

Ref. [11] in the isotropic coordinates introduced in
Ref. [14]. This allows us to transform this solution into
Cartesian coordinates. We introduce a small amount of
m ¼ 2 (in the nomenclature of Ref. [15]) nonaxisymmetric
perturbation in the conformal factor χ via

χ ¼ χ0

�
1þ A

1

ð1þ Y2Þ32
x2 − y2

Σ

�
; ð1Þ

where χ0 is the unperturbed conformal factor of the
stationary black ring, A is the perturbation amplitude, and

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~R2 þ r2Þ2 − 4 ~R2ðx2 þ y2Þ

q
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q

Y ¼ 4ð1− νÞΣ
νðr2 þ ~R2 − ΣÞ ;

~R ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− νÞ=ð1þ ν2Þ

q
: ð2Þ

Here 0 < ν < 1 and R > 0 are the ring’s thickness and
radius parameters, respectively. In our simulations, we fix
~R ¼ 1 and vary ν. This ensures that the initial coordinate
radius of the black ring is roughly 1 for all values of ν, but
the mass and hence the instability time scale will vary.
Our initial condition violates the Hamiltonian and

momentum constraint equations. However, by using small
values of A, we can ensure that constraint violations in the
initial data are correspondingly small. These small con-
straint violations are quickly suppressed by the damping
terms in the CCZ4 equations. In our simulations, we choose
10−6 ≤ A ≤ 0.002. The radial dependence of the perturba-
tion (1) is chosen to ensure that it is localized on the horizon
and therefore does not change the mass nor the angular
momentum of the background spacetime.
In our coordinates, Σ ¼ 0 is a coordinate singularity that

corresponds to another asymptotically flat region at the
other side of the Einstein-Rosen bridge. We regulate this
singularity using the “turduckening” approach [24,25] by
manually restricting to Σ ≥ ϵ2, for some small ϵ. We choose
ϵ such that the width of the region in which Σ is modified is
at most 50% of the unperturbed ring’s horizon.
To evolve the lapse, we use the CCZ4 ð1þ logÞ slicing

[19] with an advection term, starting from the initial
condition α ¼ χ. However, we could not use the standard
Gamma-Driver shift condition [26] as it quickly freezes the
large initial values of ~Γi, even with advection terms.
Instead, we evolve the shift using

∂tβ
i ¼ Fð ~Γi − fðtÞ ~Γi

t¼0Þ − ηðβi − βit¼0Þ þ βk∂kβ
i; ð3Þ

where ~Γi is the evolved conformal connection function and

fðtÞ ¼ exp ½−ðδ1Y2 þ δ2Þt2=M�; ð4Þ

Y is as defined in Eq. (2), δ1 and δ2 are dimensionless
parameters, and M is the mass of the unperturbed ring. For
our simulations we use F ¼ 2=3, η ¼ 1, δ1 ¼ 0.25, and
δ2 ¼ 0.1. The initial shift is taken to be χ times the
analytic shift.
We evolve the CCZ4 equations numerically on an

adaptively refined mesh using the GRCHOMBO code
[27,28]. We discretize the equations in space using fourth
order finite differences and integrate in time with RK4. We
use between 8 to 13 levels of refinement depending on the
thickness of the ring. The finest resolution is chosen such
that the interior of the horizon is never covered by less than
50 grid points after gauge adjustment. At the outer
boundaries we impose periodic boundary conditions.
However, the spatial extent of the domain is made suffi-
ciently large so as to avoid spurious boundary effects
throughout the course of the simulation.
To stop the formation of large gradients in ~γij close to the

ring singularity, we add a new diffusion term to the CCZ4
equations, which is restricted to act only inside a region
amounting to less than 50% of the horizon’s interior. This is
reminiscent of shock-capturing techniques in computa-
tional fluid dynamics [29]. The additional term does not
change the evolution outside the horizon since we have
enough grid points across the horizon and the diffusion
term only affects features at very small scales. See the
Supplemental Material [30] for more details.
Results.—For rings with 0.3≲ ν≲ 0.6, we find that the

evolution is dominated by a new nonaxisymmetric mode
which is distinct from the GL mode identified in Ref. [15].
Note that this range includes both thin and fat rings. In the
nonlinear regime, this new mode deforms the ring without
substantially changing its thickness. We identify it as an
elastic mode. In Fig. 2(a) we display a snapshot of the
apparent horizon for a ring with ν ¼ 0.4 in the highly
nonlinear regime of the evolution. The deformation caused
by the elastic mode can also be seen in Fig. 2 (top left). The
divergence between the maximum and minimum S1 radii
shows that the ring is physically stretching. To measure the
influence of the GL mode, we look at the degree of
nonuniformity along the ring by plotting the maximum
and minimum radius of the S2 of the ring as measured by
cross-sectional area. The result is shown in Fig. 2 (top
right). For rings in this range of ν, the minimum S2 radius
never decreases substantially, and the growth rate of the
elastic mode is larger than the GL mode. The latter is
therefore completely irrelevant as far as the nonlinear
dynamics is concerned. In fact, the growth rate of the
GL mode decreases as the rings become fatter, and for
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0.4≲ ν≲ 0.6 the complete gravitational waveforms show
that only the elastic mode is relevant. This new instability
always ends in a collapse into a topologically spherical MP
black hole.
For thin rings with 0.2≲ ν≲ 0.35, we observe a com-

petition between different modes. The waveform in Fig. 1
(top) shows that, in the linear regime, there is an apparent
mode mixing until nonlinearities become important. To
gain a better understanding of the various modes in the
m ¼ 2 sector of nonaxisymmetric gravitational perturba-
tions, we extract the waveforms by monitoring

hþ ¼ ~γxx − ~γyy
2

�
r
~R

�ð3=2Þ
; ð5Þ

along the z axis. From this, we can identify the frequencies
and growth rates of the two modes by fitting the data to

A1 sinðℜϖ1tþφ1Þeℑϖ1t þA2 sinðℜϖ2tþφ2Þeℑϖ2t: ð6Þ

We give further details about our fitting procedure and error
estimation in the Supplemental Material [30]. In Fig. 1
(middle) we compare the data with the fit (6) to show that
they are in very good agreement. This confirms that the
linear dynamics is governed by the two modes that we have
identified. In Fig. 1 (bottom) we display the frequencies
and growth rates of both the elastic and GL m ¼ 2 modes.
Our results for the GL mode agree very well with Ref. [15];
however, we were only able to identify the GL mode for
thin enough rings ðν≲ 0.4Þ. For thicker rings, the growth
rate of the GL mode is much slower than that of the elastic
mode, and hence it is much harder to isolate in a fully
nonlinear evolution. The fitting procedure also allows us to
estimate the amplitude of each mode in our initial data (1).
Both m ¼ 2 modes have comparable amplitudes initially,
and therefore, our simulation is not biased towards the
newly identified elastic mode.
Since both modes have similar growth rates for

0.2≲ ν≲ 0.35, it is not surprising that the nonlinear
dynamics is governed by a combination of the two.
Figure 2 (top left) shows a significant divergence in S1

radii for a ν ¼ 0.2 ring on a much larger scale than the
ring’s thickness. This is indicative of the elastic mode

FIG. 1. Top: complete gravitational waveform for the evolution
of the ν ¼ 0.25 ring perturbed with an m ¼ 2 mode with
amplitude A ¼ 5 × 10−4. The shaded part corresponds to the
portion of the evolution where the outermost apparent horizon
has spherical topology. Middle: fit (6) of the actual data in the
linear regime (red dots) for a perturbation with amplitude
A ¼ 10−5. At the early stages of the evolution there is contami-
nation from constraint violating modes. Bottom: Real (left) and
imaginary (right) parts of the frequency ϖ ≡ ω=ð2πTÞ of the
gravitational waves in the linear regime. Here, T is the temper-
ature of the unperturbed ring. The dashed lines correspond to the
results of Ref. [15]. For ν ¼ 0.4 we could not reliably extract the
growth rate of the GL mode.

FIG. 2. Top left: maximum and minimum inner radius of the S1

of the ring, as measured by the geodesic distance from the center
of the ring to the apparent horizon. For ν ¼ 0.2 the maximum and
the minimum eventually switch due to the displacement of the
bulges. Top right: maximum and minimum areal radius of the S2

of the ring. (a) Apparent horizon of a ν ¼ 0.4 ring in the highly
dynamical stages of the evolution. (b) Apparent horizon of the
ν ¼ 0.2 ring just before the collapse into a spherical black hole.
(c) χ ¼ 0.2 contour for a ν ¼ 0.15 ring during the evolution.
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dynamics. On the other hand, in Fig. 2 (top right) we
observe that GL dynamics causes this ring to also become
highly nonuniform. The combined effect of these two
modes on the apparent horizon is shown in Fig. 2(b).
Even though the GL mode does grow significantly here, the
end point is still a MP black hole. Presumably, the
deformations due to the elastic mode enhance the efficiency
of the gravitational wave emission, allowing the ring to
quickly shed angular momentum and mass and collapse
into a spherical black hole. Therefore, no violation of WCC
is observed in this particular case.
For rings with ν≲ 0.15, the GL mode grows fastest and

thus dominates the dynamics. In this regime, we consider
the nonlinear evolution of a ν ¼ 0.15 ring with an m ¼ 2

perturbation with amplitude A ¼ 5 × 10−5. It turns out that
for such thin rings, the m ¼ 4 mode grows fast enough that
excitations from numerical noise also become important.
Therefore, we find that the generic nonlinear dynamics is
governed by a combination of these two modes. In the
highly nonlinear regime the apparent horizon consists of
big bulges connected by long and thin necks. One would
expect that the thin necks should themselves eventually
become GL unstable, giving rise to a second generation of
bulges connected by even thinner necks. For such highly
deformed dynamical rings, the apparent horizon is no
longer a single-valued function Y∶S1 × S2 → R, causing
our horizon finder to fail (see Supplemental Material [30]).
However, in our gauge the apparent horizon follows certain
contours of the conformal factor, χ. We use these as an
indication of the location and shape of the apparent horizon
in lieu of the actual surface. In Fig. 2(c) we display the
χ ¼ 0.2 contour for the ν ¼ 0.15 ring for an m ¼ 2

perturbation with A ¼ 5 × 10−5 at t=
ffiffiffiffiffi
M

p ¼ 33.87. This
shows clear evidence that a new generation of bulges
has formed along the thin necks. We could not continue
the evolution due to the limitation in our computational
resources, but our results provide enough evidence that
this instability should continue in a qualitatively similar
manner as in the static black string. More precisely, the
horizon should develop a fractal structure consisting of
big bulges connected by thin necks at different scales.
The thinnest necks should reach zero size, and hence
a naked singularity should form, in finite asymptotic
time. Since there is no fine-tuning involved, this
result provides evidence that WCC is violated near thin
enough black ring spacetimes. We note that a pure
m ¼ 4 perturbation also gives rise to a similar structure.
However, without the stretching effect from m ¼ 2 the
instability’s time scale is much longer as the necks
are shorter. Significant additional resources will be
required to reach the second generation of bulges in this
case; however, there is no reason to expect that the end
point should be any different. The m ¼ 1 and higher m
modes are also unstable and their study will be presented
elsewhere [18].

Conclusions.—We have studied the nonlinear dynamics
of thin and fat black rings under nonaxisymmetric
perturbations. For rings with ν≳ 0.2 the end point of the
instabilities is a MP black hole with a lower angular
momentum than the original ring. On the other hand, the
GL instability dominates the evolution of thin enough
(ν≲ 0.15) rings, and the end point should be the pinch-off
of the ring. This indicates that WCC is violated around
these black ring spacetimes. Note that for these rings the
dimensionless angular momentum [12] is not particularly
large, j ∼ 1.12. Therefore, our results suggest that viola-
tions of WCC can occur for asymptotically flat black holes
with j of order 1. Even though we have only considered the
D ¼ 5 case, this conclusion should extend to higher
dimensions.
We have also identified a new, elastic-type of instability

in five-dimensional black rings. This had not been antici-
pated and was not seen in Refs. [15,16]. However, it plays a
crucial role in the end point of generic nonaxisymmetric
instabilities as it dominates for rings with ν≳ 0.2. It would
be very interesting to do a more thorough analysis of the
nonaxisymmetric gravitational perturbations of black
rings and get a detailed understanding of these elastic
instabilities.
Finally, we introduced a robust and simple new method,

based on localized diffusion, to handle singularities in
numerical general relativity. While it is used in conjunction
with the moving puncture method in the present work, we
anticipate that it has a wider range of applications. We will
present a more detailed analysis of this in future work [42].
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