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Measuring entanglement is a demanding task that usually requires full tomography of a quantum system,
involving a number of observables that grows exponentially with the number of parties. Recently, it was
suggested that adding a single ancillary qubit would allow for the efficient measurement of concurrence,
and indeed any entanglement monotone associated with antilinear operations. Here, we report on the
experimental implementation of such a device—an embedding quantum simulator—in photonics,
encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite
concurrence can be efficiently extracted from the measurement of merely two observables, instead of 15,
without full tomographic information.
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Entanglement is arguably the most striking feature of
quantum mechanics [1], defining a threshold between the
classical and quantum behavior of nature. Yet, its exper-
imental quantification in a given system remains challenging.
Several measures of entanglement involve unphysical oper-
ations, such as antilinear operations, on the quantum state
[2,3], and thus its directmeasurement cannot be implemented
in the laboratory. As a consequence, in general, experimental
measurements of entanglement have been carried out mostly
via the full reconstruction of the quantum state [4]. While
this technique—called quantum state tomography (QST)—
has been widely used when dealing with relatively low-
dimensional systems [5,6], it is known to become rapidly
intractable as the system size grows, being outside of
experimental reach in systems with ∼ten qubits [7]. This
difficulty lies in having tomeasure an exponentially growing
number of observables, 22N − 1, to reconstruct N qubits.
Such a constraint can be relaxed somewhat by using, for
example, multiple copies of the same quantum state [8], prior
state knowledge in noisy dynamics [9], or compressed
sensingmethods [10], or bymeasuringphasesmonotonically
dependent on entanglement [11]. However, measuring
entanglement in scalable systems remains a challenging task.
An efficient alternative is to embed the system dynamics

into an enlarged Hilbert-space simulator, called an embed-
ding quantum simulator (EQS) [12,13], where unphysical
operations are mapped onto physical transformations on the
simulator. The price to pay, comparatively small in larger
systems, is the addition of only one ancillary qubit and,
usually, dealing with more involved dynamics. However,
measuring the entanglement of the simulated system
becomes efficient, involving the measurement of a low
number of observables in the EQS, in contrast to the
22N − 1 needed with full tomography.

In this Letter, we experimentally demonstrate an embed-
ding quantum simulator, using it to efficiently measure
two-qubit entanglement. Our EQS uses three polarization-
encoded qubits in a circuit with two concatenated
controlled-sign gates. The measurement of only two
observables on the resulting tripartite state gives rise to
the efficient measurement of bipartite concurrence, which
would otherwise need 15 observables.
Protocol.—We consider the simulation of two-qubit

entangling dynamics governed by the Hamiltonian
H ¼ −gσz ⊗ σz, where σz ¼ j0ih0j − j1ih1j is the z
Pauli matrix written in the computational basis fj0i; j1ig
and g is a constant with units of frequency. For simplicity,
we let ℏ ¼ 1. Under this Hamiltonian, the concurrence [2]
of an evolving pure state jψðtÞi is calculated as
C ¼ jhψðtÞjσy ⊗ σyKjψðtÞij, where K is the complex
conjugate operator defined as KjψðtÞi ¼ jψðtÞ�i. Notice
here the explicit dependance of C upon the unphysical
transformation K. We now consider the dynamics of the
initial state jψð0Þi ¼ ðj0i þ j1iÞ ⊗ ðj0i þ j1iÞ=2. Under
these conditions one can calculate the resulting concurrence
at any time t as

C ¼ j sinð2gtÞj: ð1Þ

The target evolution e−iHtjψð0Þi can be embedded in a
three-qubit simulator. Given the state of interest jψi, the
transformation

jΨi ¼ j0i ⊗ Rejψi þ j1i ⊗ Imjψi ð2Þ

gives rise to a real-valued three-qubit state jΨi in the
corresponding embedding quantum simulator. The decod-
ing map is, accordingly, jψi ¼ h0jΨi þ ih1jΨi. The
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physical unitary gate σz ⊗ I4 transforms the simulator state
into σz ⊗ I4jΨi ¼ j0i ⊗ Rejψi − j1i ⊗ Imjψi, which
after the decoding becomes h0jΨi − ih1jΨi ¼ Rejψi−
iImjψi ¼ jψ�i. Therefore, the action of the complex
conjugate operator K corresponds to the single qubit
rotation σz ⊗ I4 [12,14]. Now, following the same encod-
ing rules, hψ jOKjψi ¼ hΨjðσz − iσxÞ ⊗ OjΨi with O an
observable in the simulation. In the case of O ¼ σy ⊗ σy,
we obtain

C ¼ jhσz ⊗ σy ⊗ σyi − ihσx ⊗ σy ⊗ σyij; ð3Þ

which relates the simulated concurrence to the expectation
values of two nonlocal operators in the embedding quan-
tum simulator. Regarding the dynamics, it can be shown
that the Hamiltonian HðEÞ that governs the evolution in the
simulator is HðEÞ ¼ −σy ⊗ ðReHÞ þ iI2 ⊗ ðImHÞ [12].
Accordingly, in our case, it will be given by HðEÞ ¼
gσy ⊗ σz ⊗ σz.
Our initial state under simulation is jψð0Þi ¼

ðj0i þ j1iÞ ⊗ ðj0i þ j1iÞ=2, which requires, see
Eq. (2), the initialization of the simulator in jΨð0Þi ¼
j0i ⊗ ðj0i þ j1iÞ ⊗ ðj0i þ j1iÞ=2. Under these conditions,
the relevant simulator observables, see Eq. (3), read hσx ⊗
σy ⊗ σyi ¼ sin ð2gtÞ and hσz ⊗ σy ⊗ σyi ¼ 0, from which
the concurrence of Eq. (1) will be extracted. Therefore, our
recipe, depicted in Fig. 1, allows the encoding and efficient
measurement of two-qubit concurrence dynamics.
To construct the described three-qubit simulator dynam-

ics, it can be shown (see the Supplemental Material [15])
that a quantum circuit consisting of four controlled-sign

gates and one local rotation RyðϕÞ ¼ exp ð−iσyϕÞ, as
depicted in Fig. 2(a), implements the evolution operator
UðtÞ ¼ exp ½−igðσy ⊗ σz ⊗ σzÞt�, reproducing the desired
dynamics, with ϕ ¼ gt. This quantum circuit can be further
reduced if we consider only inputs with the ancillary qubit
in state j0i, in which case, only two controlled-sign gates
reproduce the same evolution, see Fig. 2(b). This reduced
subspace of initial states corresponds to simulated input
states of only real components.
Experimental implementation.—We encode a three-qubit

state in the polarization of three single photons. The logical
basis is encoded according to jhi≡ j0i, jvi≡ j1i, where
jhi and jvi denote horizontal and vertical polarization,
respectively. The simulator is initialized in the state
jΨð0Þi ¼ jhið0Þ ⊗ ðjhið1Þ þ jvið1ÞÞ⊗ ðjhið2Þ þ jvið2ÞÞ=2 of
qubits 0, 1, and 2, and evolves via the optical circuit
in Fig. 2(b). Figure 3 is the physical implementation of
Fig. 2(b), where the dimensionless parameter ϕ ¼ gt is
controlled by the angle ϕ=2 of one half-wave plate. The two
concatenated controlled-sign gates are implemented by
probabilistic gates based on two-photon quantum interfer-
ence [16–18], see the Supplemental Material [15].
In order to reconstruct the two three-qubit observables in

Eq. (3), one needs to collect eight possible tripartite
correlations of the observable eigenstates. For instance,
the observable hσx ⊗ σy ⊗ σyi is obtained from measuring
the eight projection combinations of the fjdi; jaig ⊗
fjri; jlig ⊗ fjri; jlig states, where jdi ¼ ðjhi þ jviÞ= ffiffiffi

2
p

,
jri ¼ ðjhi þ ijviÞ= ffiffiffi

2
p

, and jai and jli are their orthogonal
states, respectively. To implement these polarization pro-
jections, we employed Glan-Taylor prisms due to their high

(a)

(b)

FIG. 1. (a) Qubits 1 and 2 evolve via an entangling Hamiltonian
H during a time interval t, at which point quantum state
tomography (QST) is performed via the measurement of 15
observables to extract the amount of evolving concurrence.
(b) An efficient alternative corresponds to adding one extra
ancilla, qubit 0, and having the enlarged system—the embedding
quantum simulator (EQS)—evolve via HðEÞ. Only two observ-
ables are now required to reproduce measurements of concur-
rence of the system under simulation.

FIG. 2. Quantum circuit for the embedding quantum
simulator. (a) Four controlled-sign gates and one local rotation

RyðϕÞ implement the evolution operator UðtÞ ¼ exp ð−igσð0Þy ⊗
σð1Þz ⊗ σð2Þz tÞ with ϕ ¼ gt. (b) A reduced circuit employing only
two controlled-sign gates reproduces the desired three-qubit
dynamics for inputs with the ancillary qubit in j0i.
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extinction ratio. However, only their transmission mode
is available, which required each of the eight dif-
ferent projection settings separately, extending our
data-measuring time. The latter can be avoided by
simultaneously registering both outputs of a projective
measurement, such as at the two output ports of a polarizing
beam splitter, allowing the simultaneous recording of all
eight possible projection settings. Thus, an immediate
reconstruction of each observable is possible.
Our source of single photons consists of four-photon

events collected from the forward and backward pair

emission in spontaneous parametric down-conversion in
a beta-barium borate crystal pumped by a 76 MHz fre-
quency-doubled mode-locked femtosecond Ti:sapphire
laser. One of the four photons is sent directly to an
avalanche photodiode detector to act as a trigger, while
the other three photons are used in the protocol. These
kinds of sources are known to suffer from undesired higher-
order photon events that are ultimately responsible for a
nontrivial gate performance degradation [19–21], although
they can be reduced by decreasing the laser pump power.
However, given the probabilistic nature and low efficiency
of down-conversion processes, multiphoton experiments
are importantly limited by low count rates, see the
Supplemental Material [15]. Therefore, increasing the
simulation performance quality by lowering the pump
power requires much longer integration times to accumu-
late meaningful statistics, which ultimately limits the
number of measured experimental settings.
As a result of these higher-order noise terms, a simple

model can be considered to account for nonperfect input
states. The experimental input n-qubit state ρexpt can be
regarded as consisting of the ideal state ρid with a certain
probability ε, and a white-noise contribution with a
probability 1 − ε, i.e., ρexpt ¼ ερid þ ð1 − εÞI2n=2n. Since
the simulated concurrence is expressed in terms of tensorial
products of Pauli matrices, the experimentally simulated
concurrence becomes Cexpt ¼ εj sinð2gtÞj.
In Fig. 4, we show our main experimental results from

our photonic embedding quantum simulator for one cycle
of concurrence evolution taken at different pump powers:
60 mW, 180 mW, and 600 mW—referred to as 10%, 30%,
and 100% pump power, respectively. Figure 4(a) shows the
theoretical predictions (for ideal pure-state inputs) and the
measured fractions of the different projections involved in

FIG. 3. Experimental setup. Three single photons with wave-
length centered at 820 nm are injected via single-mode fibers
into spatial modes 0, 1, and 2. Glan-Taylor prisms (GTs), with
transmittance th ¼ 1 (tv ¼ 0) for horizontal (vertical) polariza-
tion, and half-wave plates (HWPs) are employed to initialize the
state. Controlled two-qubit operations are performed based on
two-photon quantum interference at partially polarizing beam
splitters (PPBSs). Projective measurements are carried out with a
combination of half-wave plates, quarter-wave plates (QWPs),
and Glan-Taylor prisms. The photons are collected via single-
mode fibers and detected by avalanche photodiodes (APDs).

FIG. 4. (a) Theoretical predictions (top) and experimentally measured (bottom) fractions involved in reconstructing hσx ⊗ σy ⊗ σyi
(left) and hσz ⊗ σy ⊗ σyi (right), taken at gt ¼ π=4 for a 10% pump power. (b) Extracted simulated concurrence within one evolution
cycle, taken at 10% (blue), 30% (green), and 100% (red) pump powers. Curves represent C ¼ CPPj sinð2gtÞj, where CPP is the maximum
concurrence extracted for a given pump power (PP): C10% ¼ 0.70� 0.07, C30% ¼ 0.57� 0.03, and C100% ¼ 0.37� 0.02. Errors are
estimated from propagated Poissonian statistics. The low count rates of the protocol, see the Supplemental Material [15], limit the
number of measured experimental settings; hence, only one data point could be reconstructed at 10% pump power.
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reconstructing hσx ⊗ σy ⊗ σyi and hσz ⊗ σy ⊗ σyi for
10% pump power at gt ¼ π=4. From measuring these
two observables, see Eq. (3), we construct the simulated
concurrence produced by our EQS, shown in Fig. 4(b). We
observe a good behavior of the simulated concurrence,
which preserves the theoretically predicted sinusoidal form.
The overall attenuation of the curve is in agreement with
the proposed model of imperfect initial states. Together
with the unwanted higher-order terms, we attribute the
observed degradation to the remaining spectral mismatch
between photons created by independent down-conversion
events and injected to inputs 0 and 2 of Fig. 3—at which
outputs 2 nm band-pass filters with similar but not identical
spectra were used.
We compare our measurement of concurrence via our

simulator with an explicit measurement from state tomog-
raphy. In the latter we inject one down-converted pair into
modes 0 and 1 of Fig. 3. For any value of t, set by the wave-
plate angle ϕ, this evolving state has the same amount of
concurrence as the one from our simulation; they are
equivalent in the sense that one is related to the other at
most by local unitaries, which could be seen as incorpo-
rated in either the state preparation or within the tomog-
raphy settings.
Figure 5 shows our experimental results for the described

two-photon protocol. We extracted the concurrence of the
evolving two-qubit state from the overcomplete measure-
ments in the quantum state tomography [4]. A maximum
concurrence value of C ¼ 1 is predicted in the ideal case
of perfect pure-state inputs. Experimentally, we measured
maximum values of concurrence of C10%¼0.959�0.002,
C30% ¼ 0.884� 0.002, and C100% ¼ 0.694� 0.006, for the
three different pump powers, respectively. For the purpose
of comparing this two-photon protocol with our embedding
quantum simulator, only results for the above mentioned

powers are shown. However, we performed an additional
two-photon protocol run at an even lower pump power of
30 mW (5% pump power), and extracted a maximum
concurrence of C5% ¼ 0.979� 0.001. A clear and pro-
nounced decline on the extracted concurrence at higher
powers is also observed in this protocol. However, a
condition closer to the ideal one is reached. This observed
pump power behavior and the high amount of measured
concurrence suggest a high-quality gate performance, and
that higher-order terms—larger for higher pump powers—
are indeed the main cause of performance degradation.
While only mixed states are always involved in experi-

ments, different degrees of mixtures are present in the
three- and two-qubit protocols, resulting in a different
extracted concurrence from both methods. An inspection of
the pump dependence, see the Supplemental Material [15],
reveals that both methods decrease similarly with pump
power and are close to performance saturation at the 10%
pump level. This indicates that in the limit of low higher-
order emission our three-qubit simulator is bounded to the
observed performance. Temporal overlap between the three
photons was carefully matched. Therefore, we attribute the
remaining discrepancy to spectral mismatch between pho-
tons originated from independent down-conversion events.
This disagreement can in principle be reduced via error
correction [22,23] and entanglement purification [24]
schemes with linear optics.
Discussion.—We have shown experimentally that entan-

glement measurements in a quantum system can be
efficiently done in a higher-dimensional embedding quan-
tum simulator. The manipulation of larger Hilbert spaces
for simplifying the processing of quantum information has
been previously considered [25]. However, in the present
scenario, this advantage in computing concurrence origi-
nates from higher-order quantum correlations, as it is the
case of the appearance of tripartite entanglement [26,27].
The efficient behavior of embedding quantum simulators

resides in reducing an exponentially growing number of
observables to only a handful of them for the extraction of
entanglement monotones. We note that in this nonscalable
photonic platform the addition of one ancillary qubit and
one entangling gate results in count rates orders of
magnitude lower as compared to direct state tomography
on the two-qubit dynamics. This means that in practice
absolute integration times favor the direct two-qubit imple-
mentation. However, this introduced limitation escapes
from the purposes of the embedding protocol and instead
belongs to the specific technology employed in its current
state-of-the-art performance.
This work represents the first proof-of-principle experi-

ment showing the efficient behavior of embedding quantum
simulators for the processing of quantum information
and extraction of entanglement monotones. This validates
an architecture-independent paradigm that, when imple-
mented in a scalable platform, e.g., ions [7,13], would

FIG. 5. Concurrence measured via two-qubit quantum state
tomography (QST) on the explicit two-photon evolution, taken at
10% (blue), 30% (green), and 100% (red) pump powers. The
corresponding curves indicate C ¼ CPPj sinð2gtÞj, with CPP the
maximum extracted concurrence for a given pump power:
C10% ¼ 0.959� 0.002, C30% ¼ 0.884� 0.002, and C100% ¼
0.694� 0.006. Errors are estimated from Monte Carlo simula-
tions of Poissonian counting fluctuations.
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overcome a major obstacle in the characterization of large
quantum systems. The relevance of these techniques will
thus become patent as quantum simulators grow in size and
currently standard approaches like full tomography become
utterly unfeasible. We believe that these results pave the
way to the efficient measurement of entanglement in any
quantum platform via embedding quantum simulators.
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Note added.—We recently learned of a related paper by
Chen et al. [28].

*juan.loredo1@gmail.com
[1] R. Horodecki, P. Horodecki, M. Horodecki, and K.

Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[2] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[3] A. Osterloh and J. Siewert, Phys. Rev. A 72, 012337 (2005).
[4] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White,

Phys. Rev. A 64, 052312 (2001).
[5] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-

al-kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O.
Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, Nature
(London) 438, 643 (2005).

[6] X.-C. Yao, T.-X. Wang, P. Xu, L. He, G.-S. Pan, X.-H. Bao,
C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, Nat.
Photonics 6, 225 (2012).

[7] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg,
W. A. Coish, M. Harlander, W. Hansel, M. Hennrich, and
R. Blatt, Phys. Rev. Lett. 106, 130506 (2011).

[8] S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, F.
Mintert, and A. Buchleitner, Nature (London) 440, 1022
(2006).

[9] O. Jiménez Farías, C. Lombard Latune, S. P. Walborn,
L. Davidovich, and P. H. Souto Ribeiro, Science 324,
1414 (2009).

[10] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert,
Phys. Rev. Lett. 105, 150401 (2010).

[11] J. C. Loredo, M. A. Broome, D. H. Smith, and A. G. White,
Phys. Rev. Lett. 112, 143603 (2014).

[12] R. Di Candia, B. Mejia, H. Castillo, J. S. Pedernales,
J. Casanova, and E. Solano, Phys. Rev. Lett. 111,
240502 (2013).

[13] J. S. Pedernales, R. Di Candia, P. Schindler, T. Monz, M.
Hennrich, J. Casanova, and E. Solano, Phys. Rev. A 90,
012327 (2014).

[14] J. Casanova, C. Sabín, J. León, I. L. Egusquiza, R.
Gerritsma, C. F. Roos, J. J. García-Ripoll, and E. Solano,
Phys. Rev. X 1, 021018 (2011).

[15] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.116.070503 for details
on: the quantum circuit; the linear optics implementation;
photon count-rates; and pump power dependence.

[16] T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn,
Phys. Rev. A 65, 012314 (2001).

[17] J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and
D. Branning, Nature (London) 426, 264 (2003).

[18] T. C. Ralph, Phys. Rev. A 70, 012312 (2004).
[19] T. J. Weinhold, A. Gilchrist, K. J. Resch, A. C. Doherty, J. L.

O’Brien, G. J. Pryde, and A. G. White, arXiv:0808.0794.
[20] M. Barbieri, T. Weinhold, B. Lanyon, A. Gilchrist, K.

Resch, M. Almeida, and A. White, J. Mod. Opt. 56, 209
(2009).

[21] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H.Weinfurter, A. Zeilinger,
and M. Zukowski, Rev. Mod. Phys. 84, 777 (2012).

[22] J. L. O’Brien, G. J. Pryde, A. G. White, and T. C. Ralph,
Phys. Rev. A 71, 060303 (2005).

[23] X.-C. Yao, T.-X. Wang, H.-Z. Chen, W.-B. Gao, A. G.
Fowler, R. Raussendorf, Z.-B. Chen, N.-L. Liu, C.-Y. Lu,
Y.-J. Deng, Y.-A. Chen, and J.-W. Pan, Nature (London)
482, 489 (2012).

[24] J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A.
Zeilinger, Nature (London) 423, 417 (2003).

[25] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein,
T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien,
A. Gilchrist, and A. G. White, Nat. Phys. 5, 134 (2009).

[26] C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, Phys. Rev.
Lett. 99, 250504 (2007).

[27] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri,
D. F. V. James, A. Gilchrist, and A. G. White, Phys. Rev.
Lett. 99, 250505 (2007).

[28] M.-C. Chen, D. Wu, Z.-E. Su, X.-D. Cai, X.-L. Wang, T.
Yang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, Phys. Rev.
Lett. 116, 070502 (2016).

PRL 116, 070503 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

19 FEBRUARY 2016

070503-5

http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.72.012337
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1038/nphoton.2011.354
http://dx.doi.org/10.1038/nphoton.2011.354
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1038/nature04627
http://dx.doi.org/10.1038/nature04627
http://dx.doi.org/10.1126/science.1171544
http://dx.doi.org/10.1126/science.1171544
http://dx.doi.org/10.1103/PhysRevLett.105.150401
http://dx.doi.org/10.1103/PhysRevLett.112.143603
http://dx.doi.org/10.1103/PhysRevLett.111.240502
http://dx.doi.org/10.1103/PhysRevLett.111.240502
http://dx.doi.org/10.1103/PhysRevA.90.012327
http://dx.doi.org/10.1103/PhysRevA.90.012327
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.070503
http://dx.doi.org/10.1103/PhysRevA.65.012314
http://dx.doi.org/10.1038/nature02054
http://dx.doi.org/10.1103/PhysRevA.70.012312
http://arXiv.org/abs/0808.0794
http://dx.doi.org/10.1080/09500340802337374
http://dx.doi.org/10.1080/09500340802337374
http://dx.doi.org/10.1103/RevModPhys.84.777
http://dx.doi.org/10.1103/PhysRevA.71.060303
http://dx.doi.org/10.1038/nature10770
http://dx.doi.org/10.1038/nature10770
http://dx.doi.org/10.1038/nature01623
http://dx.doi.org/10.1038/nphys1150
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1103/PhysRevLett.116.070502
http://dx.doi.org/10.1103/PhysRevLett.116.070502

