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We identify a new universality class in one-dimensional driven open quantum systems with a dark state.
Salient features are the persistence of both themicroscopic nonequilibrium conditions as well as the quantum
coherence of dynamics close to criticality. This provides a nonequilibrium analogue of quantum criticality,
and is sharply distinct from more generic driven systems, where both effective thermalization as well as
asymptotic decoherence ensue, paralleling classical dynamical criticality. We quantify universality by
computing the full set of independent critical exponents within a functional renormalization group approach.
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Introduction.—There has been a surge of activity in a
broad spectrum of experimental platforms, which imple-
ment driven open quantum systems. In such systems,
coherent and driven-dissipative dynamics occur on an
equal footing. While such a situation is reminiscent of
conventional quantum optics, the systems in point are set
apart from more traditional realizations by a large, con-
tinuous number of spatial degrees of freedom, giving rise to
genuine driven many-body systems. Indeed, experimental
realizations range from exciton-polariton systems [1,2]
over ultracold atoms [3–5], large systems of trapped ions
[6,7], and photon Bose-Einstein condensates [8] to micro-
cavity arrays [9,10]. The driven nature at the microscale
leads to an intrinsic nonequilibrium (NEQ) situation even
in the stationary state due to the explicit breaking of
detailed balance. At this microscopic level, the dynamics
of such systems is Markovian, i.e., memoryless in time.
This is not in fundamental contradiction to genuine
quantum effects playing a role, as has been demonstrated
theoretically [11,12] and experimentally [13,14] in many-
body systems, where phase coherence or entanglement
ensue in the stationary state of tailored driven-dissipative
evolution. For the universal critical behavior of such
systems, however, despite the fact that they are “made
of quantum ingredients,” the Markovian character generi-
cally leads to a NEQ analogue of classical dynamical
criticality: typically, as the result of dissipation, phase
transitions in driven-dissipative systems are governed by
an emergent effective temperature together with the loss of
quantum coherence, and their bulk critical behavior is
captured by equilibrium universality classes [15–24].
This sparks a natural and fundamental set of questions:

Given the intrinsic quantum origin, together with the
flexibility in designing such systems, to which extent
can effects of quantum mechanical coherence persist
asymptotically at the largest distances in the vicinity of a
critical point? And if so, what are the precise parallels and
differences to criticality in closed equilibrium systems at

zero temperature? In other words, is there a driven analogue
of quantum critical behavior?
In this work, we address these questions driving a one-

dimensional open Bose gas with a strong Markovian
quantum diffusion, implemented, e.g., with microcavity
arrays. When diffusion dominates over the Markovian
noise level induced by the environment, a novel critical
regime associated to NEQ condensation can be realized,
where the coherent quantum mechanical origin of the
system and the NEQ driven nature persist at infrared
scales. Our results establish a new driven quantum univer-
sality class in one dimension, which we characterize by
computing the full set of static and dynamical critical
exponents. In particular, we obtain the following key
results. (i) New nonequilibrium fixed point. The fixed
point (FP) associated to quantum NEQ condensation
cannot be mapped to the classical FP of driven-dissipative
condensation—as evidenced from novel scaling of the
correlation length close to criticality, and we identify a
scaling regime where it governs the fluctuation dominated
renormalization group (RG) flow. Because of the fine-
tuning of the Markovian noise level in addition to the mass
gap, it is less stable—in a RG sense—than a classical fixed
point, in analogy to the double fine-tuning of mass and
temperature to zero necessary to reach an equilibrium
quantum critical point [25]. (ii) Absence of decoherence.
In classical equilibrium and driven critical behavior,
decoherence causes the fadeout of all coherent couplings
in the infrared RG flow, leading to a FP where only purely
dissipative dynamics persists. In contrast, the anomalous
dispersion relation of the critical modes proper of the
novel NEQ fixed point, manifests the simultaneous
presence of coherent and diffusive processes. The absence
of decoherence is reflected in the degeneracy of the
two critical exponents encoding kinetic mechanisms.
(iii) Absence of asymptotic thermalization. Many driven
systems exhibit effective thermal behavior at low frequen-
cies [15–22,24]. The present system does not show this
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property, and this is characterized by the nonthermal
character of the distribution function, as well as universally
by a new independent critical exponent entering the NEQ
fluctuation-dissipation relation. A hallmark of the interplay
of these effects is an oscillatory behavior of the spectral
density as a consequence of the (iv) RG limit-cycle
behavior of the complex wave function renormalization
coefficient.
Finally, notice that the noise in our system is Markovian,

in contrast to previous realizations of NEQ quantum
criticality [17,18], while the quantum nature of the novel
critical regime sharply sets apart our scenario from other
NEQ fixed points, as occurring in surface growth [26],
directed percolation [27], or turbulence [28–31].
The results presented here are obtained within a func-

tional renormalization group approach [32–34] based on
the Keldysh path integral associated to the Lindblad
quantum master equation. The nature of the new FP
precludes the use of more conventional classical dynamical
field theories pioneered by Hohenberg and Halperin [35],
and fully necessitates our quantum dynamical field theory
approach.
A platform for nonequilibrium quantum criticality.—The

starting point for our RG program is the quantum master
equation governing the evolution of the density operator ρ̂
of a one-dimensional (d ¼ 1) bosonic field ϕ̂ðxÞ;

∂tρ̂ ¼ −i½H; ρ̂� þ L½ρ̂�: ð1Þ
Two-body collisions of strength λ, among bosons (of
mass m), are encoded in the Hamiltonian H, while the
Liouvillian can be decomposed into the sum of four
dissipative channels L ¼ P

aLa (a ¼ p; l; t; d), with
La½ρ� ¼ γa

R
x (L̂aðxÞρ̂L̂†

aðxÞ − 1
2
fL̂†

aðxÞL̂aðxÞ; ρ̂g), where
local Lindblad operators incoherently create (destroy)
single particles L̂pðxÞ ¼ ϕ̂†ðxÞ(L̂lðxÞ ¼ ϕ̂ðxÞ), respec-
tively, with rates γp (γl), or destroy two particles, L̂tðxÞ ¼
ϕ̂ðxÞ2, with rate γt. The key element of our analysis is the
Lindblad operator L̂dðxÞ ¼ ∂xϕ̂ðxÞ, which is responsible
for single particle diffusion with rate γd, and which can be
realized through microcavity arrays [9,10] as portrayed in
Fig. 1 (see also Ref. [36]).
In a simple mean field description, when the gain of

single particles is balanced by two-body losses, a con-
densate ϕ0 ¼ hϕ̂ðxÞi with spontaneously chosen global
phase can emerge [38–40]. A crucial ingredient is now the
absence of particle number conservation due to pump and
loss processes. For this reason, there is no sound mode with
dispersion ω ∼ jqj (z ¼ 1), and, instead, the canonical
dynamic exponent is z ¼ 2. The effective phase space
dimension is then D ¼ dþ z ¼ 3, allowing for a conden-
sation transition in one dimension even when fluctuations
beyond mean field are taken into account.
A parameter regime of strong quantum diffusion can,

indeed, disclose a quantum critical behavior analogous to

zero temperature quantum criticality, as we are going to
glean in the following, recasting the nonunitary quantum
evolution encoded in Eq. (1) into an equivalent Keldysh
functional integral formulation of dynamics [41,42]. The
quadratic part of the action, occurring in the Keldysh
partition function, reads

Skin ¼
Z
t;x
ðϕ̄�

c; ϕ̄�
qÞ
�

0 P̄A

P̄R P̄K

��
ϕ̄c

ϕ̄q

�
; ð2Þ

where ϕ̄c and ϕ̄q are the so-called classical and quantum
fields, defined by the symmetric and antisymmetric combi-
nations of the fields on the forward and backward parts of
the Keldysh contour [41]. In Eq. (2), P̄R ¼ ðP̄AÞ† ¼ i∂t þ
ðK̄R − iK̄IÞ∂2

x þ iχ̄ is the retarded (advanced) inverse
Green’s function, while P̄K ¼ iðγ̄ − 2γ̄d∂2

xÞ is the
Keldysh inverse Green’s function. In Eq. (2) we relabeled
the parameters in view of RG applications: at the micro-
scopic scale, kUV (the ultraviolet scale where our RG
starts), they are expressed in terms of the couplings entering
Eq. (1), K̄RjkUV ≡ 1=2m, K̄IjkUV ¼ γ̄djkUV ≡ γd, χ̄jkUV ¼
ðγl − γpÞ=2 and γ̄jkUV ¼ γp þ γl. The existence of two
independent Green’s functions, ḠR=A and ḠK—an exclu-
sive aspect of NEQ dynamics [41,43]—allows for a
distinction between a “retarded mass,” χ̄, which controls
the distance from the condensation transition, and a
“Keldysh mass,” γ̄, which will play in the following the
role of a temperature and which microscopically corre-
sponds to a constant Markovian noise level induced by the
environment.
The role of canonical scaling of a non-Markovian quan-

tum noise, P̄K
eqðωÞ ∼ jωj (responsible for zero-temperature

bosonic quantum phase transitions [41]), can be taken by the
Markovian diffusive driving, P̄K

neqðqÞ ∼ 2γ̄dq2, in a model
with dynamical critical exponent z ¼ 2 (ω ∼ qz). In our

FIG. 1. A one-dimensional array of microwave resonators,
coupled to an array of superconducting qubits (blue dots), which
can decay with rate η (cavity bosons can tunnel among neigh-
bouring sites—yellow arrows). Each pair of adjacent photonic
modes interact with a single qubit via the dipole term,
H ∼ Ωσþj ðbi − biþ1Þ þ H:c:; bi are the bosonic annihilation
operators for the cavity modes and the local qubit Hamiltonians
are proportional to the σzj Pauli matrix. For an energy scale
separation η ≫ Ω, the qubit dynamics can be adiabatically
eliminated [37]. This gives rise to Lindblad operators propor-
tional to ∼bi − biþ1, which in the continuum limit yields LdðxÞ. It
imprints an additional diffusion on the propagation of bosons
and, crucially for this work, gives rise to a scaling of noise level
∼q2, as discussed after Eq. (2).

PRL 116, 070407 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

19 FEBRUARY 2016

070407-2



system, such a quantum scaling regime and its associated
NEQ fixed point, appear then in the simultaneous limit
γl → γp, and γl, γp → 0, where diffusion becomes dominant
over γ̄ in PK , and the mass gap closes (χ̄ → 0). This double
fine-tuning is analogous to the simultaneous tuning of the
spectral gap and temperature to zero at equilibrium quantum
critical points [25], and it opens the door to the realization of
a driven analogue of quantum criticality in our system. In
passing,wemention that the gapless nature of theNEQdrive
P̄K
neqðq → 0Þ → 0, is due to the existence of a many-body

dark state [11,12]—amode decoupled from noise, located at
q ¼ 0 in our case.
In a strongly diffusive, near critical regime, spectral

and Keldysh components of the Gaussian action, Eq. (2),
scale then alike, P̄R=A=KðqÞ ∼ q2 (in compact notation
½P̄R=A=K� ¼ 2). This fixes the canonical classical and
quantum field dimensions to ½ϕ̄c� ¼ ½ϕ̄q� ¼ d=2 and sets
the canonical scaling dimension of quartic couplings to
2 − d (upper critical dimension, dc ¼ 2).
We now point out the two key scales which delimit the

scaling regime introduced here and the novel NEQ quan-
tum critical point discussed later. The first can be gleaned
from an analogy with equilibrium: In the quantum-classical
crossover at finite temperature, the quantum scaling asso-
ciated to equilibrium quantum phase transitions persists at
scales smaller than the de Broglie length, LdB ∼ ð1=T1=zÞ
[25], where temperature T cuts off coherent quantum
fluctuations. Analogously, the novel NEQ quantum critical
regime is delimited at low momenta by the Markov
momentum scale ΛM—the threshold where constant
Markovian noise prevails over single particle diffusion,
spoiling the diffusive scaling of the noise component of the
quadratic action (P̄K). For ΛM we find the upper bound
ΛM ≲ 0.2ΛG (see Supplemental Material [44]) and at
distances larger than Λ−1

M , critical properties are governed
by a FP in the Kardar-Parisi-Zhang universality class [47].
The second key scale is the Ginzburg momentum scale,
ΛG ≃ γt=γd: at momenta lower than this scale corrections to
canonical scaling become effective, indicating the break-
down of a mean-field description [48]. According to this
analysis, the novel critical behavior manifests then in the
momenta window ΛM ≲ q≲ ΛG.
Nonequilibrium functional renormalization.—We now

aim at determining the universality class, i.e., the full set of
critical exponents associated to the quantum NEQ critical
regime, which is technically characterized by the so-called
Wilson-Fisher FP of the RG equations [48]. To this end, we
dress the microscopic coefficients of Eq. (1) with RG
corrections, employing a functional RG (FRG) suited for
open NEQ quantum many body systems [21] (and pre-
viously developed for NEQ closed settings [49–51]). FRG
allows us to interpolate from the microscopic dissipative
action to the infrared effective action, introducing an
infrared regulator R̄k, which suppresses stepwise fluctua-
tions with momenta less than an infrared cutoff scale k. In

this way we can approach smoothly the critical point where
infrared divergences govern the physics. The FRG flow is
based on a functional differential equation [32] for the

effective action Γk, ∂kΓk ¼ ði=2ÞTr½ðΓð2̄Þ
k þ R̄kÞ−1∂kR̄k�,

where the trace operation, Tr, denotes summation over
internal degrees of freedom as well as summation over

frequencies and momenta, and Γð2̄Þ
k the second functional

derivative of the effective action with respect to the fields.
In order to convert the functional differential equation for
Γk into a closed set of nonlinear differential equations
for the RG running of the couplings (the beta functions
[32,48]), we provide a functional ansatz for Γk ≡ SQ;k ¼
Skin þ Sint, where we systematically take into account in
Sint ≡ Sh þ Sa all operators which are classified relevant
according to the quantum power counting discussed above:

Sh ¼ −
Z
x;t

1

2

�∂Ūc

∂ϕ̄c
ϕ̄q þ

∂Ū�
c

∂ϕ̄�
c
ϕ̄�
q þ

∂Ūq

∂ϕ̄q
ϕ̄c þ

∂Ū�
q

∂ϕ̄�
q
ϕ̄�
c

�
;

Sa ¼
Z
x;t
iḡ1

�
ϕ̄�
cϕ̄c −

ρ̄0
2

�
ϕ̄�
qϕ̄q þ iḡ2ðϕ̄�

qϕ̄qÞ2þ

−
1

4
½ḡ3ðϕ̄�

cϕ̄qÞ2 − ḡ�3ðϕ̄cϕ̄
�
qÞ2�: ð3Þ

Sh and Sa are, respectively, the Hermitian and anti-
Hermitian parts of the interaction action. The potentials
Ūc ¼ 1

2
ūcðϕ̄�

cϕ̄c − ρ̄0Þ2 and Ūq ¼ 1
2
ūqðϕ̄�

qϕ̄qÞ2 have asso-
ciated complex couplings ūc;q ≡ λ̄c;q þ iκ̄c;q, which micro-
scopically coincide with the parameters entering the master
equation (λ̄cjkUV ¼ λ̄qjkUV ¼ λ, κ̄cjkUV ¼ κ̄qjkUV ¼γt, ḡ1jkUV ¼
2γt). The couplings ḡ2 and ḡ3 ≡ λ̄3 þ iκ̄3 are, instead, only
generated in the course of renormalization. In Eq. (3) we
introduced the condensate density (resulting from balance
of particles gain and losses) ρ̄0, since in our practical
calculations we approach the transition from the ordered
phase, taking the limit of the stationary state condensate
ρ̄0 ¼ ϕ̄�

cϕ̄cjss ¼ ϕ̄�
0ϕ̄0 → 0. In this way, we capture two-

loop effects [32] necessary to compute the full set of critical
exponents and thus determine the universality class. We
also rewrite the inverse R=A propagators allowing for a
complex wave-function renormalization coefficient Z,
P̄R ¼ iZ�∂t þ K̄�∂2

x, with K̄ ≡ K̄R þ iK̄I and Z≡ ZRþ
iZI , [52], whose anomalous dimension can acquire a real
and imaginary part, ηZ ≡ ηZR þ iηZI ≡ −∂tZ=Z. We mark
that the quantum dynamical field theory SQ;k has a richer
RG operator content than a conventional equilibrium
Martin-Siggia-Rose action [41,43] or the semiclassical
model in three dimensions for driven-dissipative conden-
sation [21] (where γ̄d ¼ 0, and ūq ¼ ḡ1 ¼ ḡ2 ¼ ḡ3 ¼ 0

from the outset—on the basis of their RG irrelevance).
Rescaling all the couplings fgg of SQ;k by the quantum

canonical power counting, we find a FP solution f~g�g of the
FRG beta functions in terms of the rescaled variables f~gg
(see Supplemental Material Ref. [44]). The analysis in the
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vicinity of the FP gives access to the full set of critical
exponents. We will use as a benchmark for the salient
physical features of the quantum FP in d ¼ 1 dimensions
(D ¼ 3), its semiclassical driven Markovian counterpart in
d ¼ 3 dimensions [21].
A nonequilibrium quantum universality class.—

(i) Nonequilibrium fixed point.—The key new property
of the quantum FP is its mixed nature with coexistent
coherent and dissipative processes, as shown in Fig. 2. This
new FP is less stable than the finite temperature FP, or the
semiclassical one, since the additional fine tuning of the
Markovian noise level is necessary to reach the quantum
FP—as discussed above.
In the domain of equilibrium phase transitions, the

universality classes of d-dimensional critical quantum
systems and of their classical dþ z dimensional counter-
parts [25,53,54] coincide. Table I compares the full set of
critical exponents of the quantum transition and of its
semiclassical driven-dissipative counterpart [21], elucidat-
ing that the analogy does not hold in the case of our NEQ
setting. In the vicinity of the transition, the exponent (ν)
controlling the divergence of the correlation length of the
Bose field, exhibits, for instance, the mismatch among the
two critical characters.
(ii)Absence of asymptotic decoherence.—Persistence of

quantum mechanical facets at criticality (for length scales

shorter than Λ−1
M ), is a common feature between our FP and

equilibrium quantum critical points [25,53,54]. The low
energy anomalous dispersion relation of critical modes,
ωk ∼ k2−ηKI ðc1 − ic2Þ, encodes coherent effects (c1;2 are
two positive constants depending on the quantum FP), in
contrast to the purely diffusive leading behavior ofωk in the
vicinity of the dissipative FP of the semiclassical model,
ωk ∼ −ik2−ηKI [21]. From an RG point of view, the
exponent degeneracy ηKR

¼ ηKI
¼ −0.025 allows for a

finite ratio of coherent propagation (KR) versus diffusion
(KI) r ¼ ðKR=KIÞ ∼ k−ηKRþηKI , which is thus fully con-
sistent with the results of Fig. 2, and, in particular, indicates
the absence of decoherence at long distances.
(iii)Absence of asymptotic thermalization.—The persist-

ence of NEQ character at macroscales and the associated
nonthermal character of the distribution function, constitute
the strongest evidence that the quantum universality class
found in this Letter cannot be related to its semiclassical
driven Markovian counterpart in dþ z dimensions, or to an
equilibrium FP.
To see this point, we note that the fluctuation-dissipation

relation demands, in the 3D driven-dissipative model, that
the effective temperature TC ¼ jZjγ—extracted from the
infrared bosonic distribution function FCðω; kÞ ∼ ðTC=ωÞ,
is scale invariant. This expresses the principle of detailed
balance of thermal equilibrium states (invariance of temper-
ature under the system partition) in a RG language [21,55].
Such circumstance occurs at the semiclassical FP via the
emergent exponent degeneracy ηγ ¼ −ηZR (cf. Table I)—
the system thermalizes asymptotically.
In the same spirit, if thermalization were to ensue close to

the quantum FP, scale invariance of the low-frequency
distribution function FQðω; kÞ ∼ ½TQðkÞ=ω�ð1þ ~γ�=2Þ
(TQðkÞ≡ jZjγdk2) must be expected as a necessary con-
dition. Specifically, replacing the bare scaling of the
frequency ω ∼ kz in FQðω; kÞ, insensitivity to system’s
partition would manifest in the exact scaling relation
FQ ∼ k0. The absence of exponent degeneracy, ηγd ≠
−ηZR (cf. Table I), signals scaling violation in the infrared
behavior of FQ ∼ k−ðηγdþηZRÞ, and, accordingly, the absence
of infrared thermalization at the quantum FP.
(iv)RG limit cycle of Z.—Finally, we notice that the peak

of the spectral density—the imaginary part of the retarded
single particle dynamical response Aðω ¼ ReωkÞ ¼
½ReðZÞ=jZj2�ð1=ImωkÞ is sensitive to oscillations present
in Z ∼ k−ηZRe−iηZIt, induced by a nonvanishing ηZI

FIG. 2. In the quantum problem, all the rescaled couplings (we
portayed some of the f~gg) keep a nonvanishing real part at the FP
and their RG flow freezes in the complex plane (as indicated by the
red cross on the curved arrows). In the semiclassical problem,
instead,decoherence forcesasymptoticallyall thecouplings to flow
onto the imaginary axis, and dynamics at infrared scales becomes
purely dissipative.

TABLE I. Comparison between the critical exponents of the quantum and semiclassical driven dissipative models
(taken from Ref. [21]). In the semiclassical scaling γ ∼ k0 and the Markovian noise can acquire an anomalous
dimension, ηγ .

Crit. Exps. ν ηKR
ηKI

ηZR ηZI ηγd ηγ

Quantum 0.405 −0.025 −0.025 0.08 0.04 −0.26 ×
Semi-classical 0.72 −0.22 −0.12 0.16 0 × −0.16
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[t ¼ logðk=ΛGÞ is the RG flow parameter]. Even if these
RG limit-cycle oscillations occur with a huge period,
2π=ηZI, they are a remarkable signature of the novel critical
behavior, since they prevent the possibility to have a real
wave-function renormalization Z, contrary to what happens
for purely dissipative relaxational models [35] or for the
semiclassical FP, where, instead, ηZI ¼ 0 (cf. Table I) [21].
Conclusions.—We have shown that both quantum

mechanical coherence and the microscopic driven nature
of open quantum systems can persist close to a critical
point, in striking contrast with classical equilibrium and
semiclassical NEQ fixed points. We have discussed the
impact of this novel critical behavior on the correlation
length of the order parameter on the distribution function
and on the spectral density. An important perspective
direction is to study the effect of additional symmetries
and conservation laws on the dynamical fine structure of
this novel universal behavior.
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