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Photons of a laser beam driving the upper motional sideband of an optomechanical cavity can decay
into photon-phonon pairs by means of an optomechanical parametric process. The phononic state can
subsequently be mapped to a photonic state by exciting the lower sideband, hence creating photon-photon
pairs out of an optomechanical system. Here we show that these pairs can violate a Bell inequality when
they are measured with photon counting techniques preceded by small displacement operations in phase
space. The consequence of such a violation as well as the experimental requirements are intensively
discussed.
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Introduction.—Cavity optomechanics, which describes a
mechanical oscillator controlled by an electromagnetic
cavity mode via a generalized radiation pressure force, is
the subject of intense research [1–3]. Most recent progress
includes the cooling of mechanical oscillators down to the
ground state [4–6], the readout of the mechanical position
with a readout imprecision below the standard quantum
limit [7] as well as optomechanical squeezing [8,9] and
entanglement [10]. Reciprocally, the mechanical degrees
of freedom can be used to control the cavity light, e.g., for
fast and slow light [11,12], frequency conversions [13,14],
squeezing [15], and information storage in long-lived
mechanical oscillations [10,16].
Optomechanical systems are also envisioned as test

benches for physical theories [17–23]. As a step in this
direction, quantum correlations between light and mechan-
ics have been observed recently [10]. In this experiment,
quantum features have been detected through an entangle-
ment witness where one assumes that the measurement
devices are well characterized and where quantum theory is
used to predict the results of these measurements on
separable states. It is interesting to wonder whether the
nonclassical behavior of optomechanical systems can be
certified outside of the quantum formalism, i.e., from a Bell
test [24]. This is particularly relevant to test postquantum
theories including explicit collapse models [25–28], where
the assumption that the system behaves quantum mechan-
ically may be questionable [29].
In this Letter, we show how to perform such a Bell test in

the experimentally relevant weak-optomechanical coupling
and sideband-resolved regime. Our proposal, which starts
with a mechanical oscillator close to its ground state,
consists of two steps. First, the optomechanical system
is excited by a laser tuned to the upper motional sideband of
the cavity to create photon-phonon pairs via optomechan-
ical parametric conversion. Second, a laser resonant with

the lower sideband is used to map the phononic state to the
cavity field. The correlations between the photons gener-
ated at the cavity frequency during the first and second
steps are then analyzed by photon counting preceded by
small displacement operations in phase space. We show
that they violate the Bell-CHSH (Clauser-Horne-Shimony-
Holt) inequality [30], revealing that the optomechanical
state is nonlocal, i.e., provides stronger correlations than
entanglement [31]. This claim is device independent, i.e.,
holds without assumptions on the dimension of the under-
lying Hilbert space or on the precise alignment of the
measurement settings [32]. While several requirements are
challenging to meet in practice, our proposal can be seen as
a natural extension of ongoing experiments [33] performing
photon counting in optomechanical cavities.
Principle of the optomechanical Bell test.—The basic

principle is inspired by Refs. [34,35] and is represented
in Fig. 1. We use two laser pulses driving either the upper
or the lower optomechanical sideband, at frequency ω�,
which is the sum or the difference of the cavity (ωc)
and the mechanical (Ωm) frequencies. The optomechanical
Hamiltonian includes H0 ¼ ℏωca†aþ ℏΩmb†b, the
uncoupled cavity and mechanical systems with respective
bosonic operators a and b, HOM ¼ −ℏg0a†aðb† þ bÞ, the
optomechanical interaction with g0 the optomechanical
coupling, and Hl ¼ ℏðs��eiω�taþ s�e−iω�ta†Þ, the driving
laserwith js�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κP�=ℏω�

p
,P� being the laser power and

κ the cavity decay rate (assuming that the intracavity loss
is negligible). In the interaction picture, the weak coupling
limit g0 ≪ κ and the resolved sideband regime κ ≪ Ωm, the
dynamics are given by a set of Langevin equations,

da
dt

¼ i
ℏ
½H�; a� −

κ

2
aþ ffiffiffi

κ
p

ain; ð1Þ
db
dt

¼ i
ℏ
½H�; b� −

γ

2
bþ ffiffiffi

γ
p

bin; ð2Þ
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with the linearized Hamiltonians Hþ ¼ −gþℏa†b† þ H:c.
for a blue detuned drive and H− ¼ −g−ℏa†bþ H:c. for
a red detuned drive. g� are the effective optomechanical
coupling rates enhanced by the intracavity photon number
g� ¼ g0

ffiffiffiffiffiffi
n�

p ¼ (κP�=ℏωcðΩ2
m þ κ2=4Þ).ain is thevacuum

noise entering the cavity. We assume that the laser is
shot-noise limited; hence, it does not add contributions to
the input noise. bin is the thermal noise from a phonon
bath at temperature Tbath and mean occupation number
nth ¼ ðkBTbath=ℏΩmÞ. In the following treatment,we neglect
the mechanical decay which is well justified for time scales
smaller than the thermal decoherence time 1=γnth, γ being
the coupling rate between the mechanical oscillator and the
thermal bath.
Consider first the case where the mechanics is driven by

a blue detuned laser. In the regime gþ ≪ κ, the cavity mode
can be adiabatically eliminated and Eq. (1) leads to a1 ¼
ð2=κÞðigþb† þ

ffiffiffi
κ

p
a1;inÞ (the subscript on the cavity field

operators is used to recall that we are considering the
first step). Further, introducing the input-output relation,
a1;out ¼ −a1;in þ

ffiffiffi
κ

p
a1, we obtain

a1;out ¼ a1;in þ i
ffiffiffiffiffiffiffiffi
2ḡþ

p
b†; ð3Þ

db
dt

¼ ḡþbþ i
ffiffiffiffiffiffiffiffi
2ḡþ

p
a†1;in; ð4Þ

where ḡþ ¼ ð2g2þ=κÞ. To solve these coupled equations, we
follow Hofer et al. [35] and introduce the temporal modes
A1;inðtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ḡþ=1−e−2ḡþtÞ

p R
t
0dt

0e−ḡþt0a1;inðt0Þ, A1;outðtÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ḡþ=e2ḡþt−1Þ

p R
t
0 dt

0eḡþt0a1;outðt0Þ. The solutions of
Eqs. (3) and (4) take the following simple forms:
A1;outðtÞ¼eḡþtA1;inðtÞþi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ḡþt−1

p
b†ð0Þ, bðtÞ¼ eḡþtbð0Þþ

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ḡþt−1

p
A†
1;inðtÞ. These solutions can be rewritten

as A1;out ¼ ~U†
1ðtÞA1;in

~U1ðtÞ and bðtÞ ¼ ~U†
1ðtÞbð0Þ ~U1ðtÞ,

where the propagator is given by

~U1ðtÞ ¼ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2ḡþt

p
A†
1;inb

†

× eḡþtð−1−A
†
1;inA1;in−b†bÞei

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2ḡþt

p
A1;inb: ð5Þ

When applied on the vacuum, this propagator leads to the
creation of photon-phonon pairs where the number of
photons equals the number of phonons, each of them
following a thermal statistics with mean excitation number
e2ḡþt − 1.
Now consider the case where the mechanics is driven by

a red detuned laser; i.e., the dynamics is given by the beam
splitter Hamiltonian H−. Following the same procedure as
before, Eqs. (3) and (4) become

a2;out ¼ a2;in þ i
ffiffiffiffiffiffiffiffi
2ḡ−

p
b; ð6Þ

db
dt

¼ −ḡ−bþ i
ffiffiffiffiffiffiffiffi
2ḡ−

p
a2;in; ð7Þ

where ḡ− ¼ ð2g2−=κÞ. Introducing the modes
A2;inðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ḡ−=e2ḡ−t − 1Þ

p R
t
0 dt

0eḡ−t0a2;inðt0Þ, A2;outðtÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ḡ−=1−e−2ḡ−tÞ

p R
t
0 dt

0e−ḡ−t0a2;outðt0Þ leads to the simple
expression for the solutions of Eqs. (6) and (7) at a time t
after the beginning of the red detuned pulse A2;outðtÞ ¼
e−ḡ−tA2;inðtÞ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ḡ−t

p
bð0Þ, bðtÞ ¼ e−ḡ−tbð0Þþ

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ḡ−t

p
A2;inðtÞ. These solutions can be rewritten as

A2;out¼ ~U†
2ðtÞA2;in

~U2ðtÞ and bðtÞ ¼ ~U†
2ðtÞbð0Þ ~U2ðtÞ,

where the propagator is given by

~U2ðtÞ ¼ ei
ffiffiffiffiffiffiffiffiffiffiffi
e2ḡ−t−1

p
A2;inb†

× e−ḡ−tðA
†
2;inA2;in−b†bÞei

ffiffiffiffiffiffiffiffiffiffiffi
e2ḡ− t−1

p
A†
2;inb: ð8Þ

This corresponds to a process converting a phonon into a
photon with probability 1 − e−2ḡ−t.
Now consider an initial state where both optical modes

A1 and A2 are empty and where the mechanics is prepared
in its ground state. Switching on the blue detuned laser for a
time T1, then the red detuned laser for a time T2, leads to a
photon-photon state in mode A1;out, A2;out given by ρA1;A2

¼
Trb ~U2ðT2Þ ~U1ðT1Þj0; 0; 0iA1;in;A2;in;bh0; 0; 0j ~U†

1ðT1Þ ~U†
2ðT2Þ.

In the ideal limit ḡ−T2 → þ∞, the phonon-photon
mapping is perfect and the state ρA1;A2

corresponds to a
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FIG. 1. (a) Principle of the proposed Bell test. Starting with the
mechanical system in its motional ground state, a first laser
excites the blue detuned sideband to create correlated photon-
phonon pairs. A second laser then drives the red detuned sideband
to coherently convert the phonons into photons. The resulting
photons pairs (mode A1 and A2) are analyzed using a photon
detector preceded by a displacement in phase space. (b) Cavity
linewidth κ and its two sidebands ðω�Þ detuned from the cavity
frequency ωc by the mechanical frequency ðωmÞ. (c) Pulse
sequence in time. The first laser resonantly excites the blue
sideband while the second laser is resonant with the red sideband.
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two-mode squeezed vacuum. In the general case where
ḡ−T2 has a finite value, ρA1;A2

still corresponds to a
squeezed vacuum but where the mode A2 undergoes loss.
This loss can be modeled by a beam splitter with a
transmission T ¼ 1 − e−2ḡ−t. The next section shows
how to reveal the nonlocal content of such a state.
In order to test a Bell inequality with the modes A1;out,

A2;out (the subscript “out” is omitted below), we consider a
single-photon detector—which does not resolve the photon
number—combined with a displacement operation DðαÞ.
We associate the outcome þ1 (−1) to the absence of
detection (to the detection of at least one photon) at least
one photon. In the subspace composed of thevacuum and the
single-photon Fock state, such a measurement corresponds
exactly to the observable σz for α ¼ 0, while for α ¼ 1
(α ¼ i) it is a noisy σx (σy) [36]. The potential of such
measurements for nonlocality detection has been highlighted
in Refs. [37,38], for example. Reference [39] has also shown
how they can be used for Bell tests in photonic experiments
where two-mode squeezed states are produced through

spontaneous parametric down-conversion. More recently,
they have been used to reveal genuine path entanglement
[40]. Further note that a displacement is easy to implement in
practice as it requires a coherent state and an unbalanced
beam splitter only [41].
The joint probabilityPðþ1þ 1jα1α2Þ to get the outcomes

þ1 for both A1 and A2 when they are analyzed with photon
counting with efficiency η preceded by displacements
with amplitude α1 and α2 for A1 and A2, respectively,
is given by Pðþ1þ 1jα1α2Þ ¼ Tr½ρA1;A2

Oηðα1; A1Þ ⊗
Oηðα2; A2Þ�, where Oηðαi; AiÞ ¼ D†ðαiÞð1 − ηÞA†

i AiDðαiÞ.
Such a probability can be computed easily by noting that
loss and displacement can be commuted by changing the
amplitude of the displacement. In particular, Pðþ1þ
1jα1α2Þ ¼ Tr½ρ̄A1;A2

Oηðα1; A1Þ ⊗ Oη0 ðα2
ffiffiffiffi
T

p
; A2Þ�, where

η0 ¼ ηT, and ρ̄A1;A2
¼ ð1 − pÞe− ffiffiffi

p
p

A†
1
A†
2 j0iA1;A2

h0je− ffiffiffi
p

p
A1A2

is simply the two-mode squeezed vacuum. (1 − p ¼
e−2ḡþT1 is the probability that both modes are empty.) We
find

Pðþ1þ 1jα1α2Þ ¼
ð1 − pÞ

1 − pð1 − ηÞð1 − η0Þ e
−fηjα1j2½1−ð1−η0Þp�þη0jα2j2T½1−ð1−ηÞp�g=½1−pð1−ηÞð1−η0Þ�eηη0

ffiffiffi
p

p ðα�
1
α�
2
þα1α2Þ

ffiffiffi
T

p
=½1−pð1−ηÞð1−η0Þ�:

ð9Þ

Together with the marginals

Pðþ1jα1Þ ¼
ð1 − pÞ

1 − pð1 − ηÞ × e−ηð1−pÞjα1j2=½1−pð1−ηÞ�;

Pðþ1jα2Þ ¼
ð1 − pÞ

1 − pð1 − η0Þ × e−η
0ð1−pÞjα2j2T=½1−pð1−η0Þ�;

we get the explicit value of the correlator Eα1;α2 ¼
1−2½Pðþ1jα1ÞþPðþ1jα2Þ�þ4Pðþ1þ1jα1α2Þ to test the
Bell-CHSH inequality, CHSH¼ jEα1;α2 þEα0

1
;α2 þEα1;α02−

Eα0
1
;α0

2 j≤ 2, which holds for any local hidden-variable
model.
Figure 2 shows the CHSH values obtained from the

optimization over the measurement settings αi, α0i, i ∈ ½1; 2�
as a function of the photon-phonon mapping efficiency
T ¼ 1 − e−2ḡ−t for various detection efficiencies η. For high
enough T and η, we see that the CHSH inequality is
violated, hence, showing that the correlations of modes A1

and A2 cannot be reproduced by local hidden-variable
theories.
In the above discussion, we have assumed that the

mechanical system is prepared in its ground state. In the
more general case it is in a thermal state with mean
occupation number n0; the expressions of the joint prob-
ability Pðþ1þ 1jα1α2Þ and the marginals Pðþ1jαiÞ can be
derived as before; cf. Ref. [42], part I. The CHSH values
resulting from the optimization over the measurement

settings are given in Fig. 3 as a function of the phonon-
photon mapping efficiency for various mean mechanical
occupation numbers assuming unit detection efficiencies. A
substantial violation can be obtained if n0 ≪ 1.

FIG. 2. CHSH values optimized over the measurement settings
ðα1; α2Þ as a function of the optomechanical mapping efficiency
ðT ¼ 1 − e−2ḡ−tÞ for various detection efficiencies η. The CHSH
value is larger than the local bound 2 for unit detection
efficiencies when T ≥ 52%, while for unit phonon-photon map-
ping efficiency, η ≥ 66.8% is required.
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Feasibility.—In this paragraph, we discuss the exper-
imental feasibility of the proposed Bell test in detail. The
requirements for detecting nonlocality are (i) sideband
regime κ ≪ Ωm, (ii) weak coupling regime g0 ≪ κ,
(iii) ground state cooling n0 ≪ 1 and negligible mechanical
decoherence during the durations of blue and red detuned
laser pulses T1 þ T2 ≪ ðγnthÞ−1. Given that nth ∝ Ω−1

m ,
these conditions are easier to meet with high Q and high
frequency Ωm oscillators. While superconducting micro-
wave optomechanical cavity systems are promising [44],
we focus on an implementation of our Bell test with a
photonic crystal nanobeam resonator [6,45,46] that distin-
guishes itself by a very high mechanical frequency
Ωm=2π ¼ 5 GHz. This frequency together with its optical
linewidth κ=2π < 1 GHz places this resonator in the
resolved sideband regime [45]. The optomechanical cou-
pling rate is large g0=2π ≈ 1 MHz [45], and mechanical
coherence times of the order of 10–100 μs are expected
at 4 K and below [45,47]. With a bath temperature
Tbath ≈ 1.6 K, an initial occupancy of n0 ¼ 0.01 can be
achieved in 100 ns of sideband cooling with 1000 (intra-
cavity) photons corresponding to a peak laser power of
150 μW [34]. For almost squared pulses with rising time
of the order of 1 ns, we get pure and noiseless emissions
as expected from two-mode squeeezed states [34]. For
T1 ¼ 25 ns and T2 ¼ 50 ns, we find CHSH ¼ 2.19 assum-
ing η ¼ 90% detection efficiency, fixing n− ¼ 250, and
optimizing the CHSH value over nþ ¼ 75, and over the
measurement settings. As the present scheme relies on the
ability to accurately and repeatedly address the optome-
chanical sidebands, a continuous monitoring is required to
correct the unavoidable broadband frequency noise of the
cavity. Furthermore, the scattered photon pairs have to be
spectrally filtered from the pump lasers. To account for an

imperfect filtering of both the cavity locking and pump
lasers, we include a background noise in the detection that
we model as dark counts. We found that the CHSH
violation (CHSH ¼ 2.19) is unchanged if the dark count
probability is of ≤ 10−3. This sets the constraints on the
quality of the filtering processes once the intrinsic noise of
the detector is determined. Note that for state-of-the-art-
detectors, the noise can be of the order of 10−7 or 10−8 for
detection windows of a few tens of ns.
Perspectives.—Our results show how optomechanical

systems can be used to test a Bell inequality. They provide
an attractive perspective for the experiment reported in
Ref. [33], where a mechanical system is combined with
photon counting techniques. Achieving high overall
detection efficiencies is facilitated by photons emitted in
a well-defined spatial mode which may be coupled into a
single-mode fiber with a very high efficiency. Moreover,
the wavelength of photons at 1550 nm is an appealing asset
to perform the Bell test between distant locations, i.e., to
close the locality loophole; see Ref. [42] part II. We also
note that our results can find interesting perspectives in
quantum memory experiments. In the context of light
storage, off-resonant Raman scattering can be used to
create photon-spin wave pairs in atomic ensembles [48].
The spin-wave state can then be mapped to photons using a
resonant Raman process—this mapping is made very
efficient thanks to a collective emission. Since the resulting
photon-photon state is analog to the one described in this
Letter, the Bell test that we propose would allow one to
certify that the memory operates in the quantum regime.

We thank K. Hammerer and S. Hofer for having pointed
out the interest of an optomechanical Bell test at an
early stage of this work. This work was supported by
the Swiss National Science Foundation (SNSF), through
Grant No. PP00P2-150579, the Swiss NCCR QSIT, and a
SNSFAmbizione Fellowship, as well as by the Swiss State
Secretariat for Education and Research through the COST
Action MP1006.

Note added—While our proposal focuses on optomechan-
ical systems, a Bell test can be performed with electro-
mechanical systems. Recently, we became aware of a
proposal along this line by Hofer et al. [49].
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