
Nonlocal Measurements via Quantum Erasure

Aharon Brodutch1,* and Eliahu Cohen2,3,†
1Institute for Quantum Computing and Department of Physics and Astronomy,

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
2School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel

3H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
(Received 6 August 2015; revised manuscript received 17 December 2015; published 18 February 2016)

Nonlocal observables play an important role in quantum theory, from Bell inequalities and various
postselection paradoxes to quantum error correction codes. Instantaneous measurement of these
observables is known to be a difficult problem, especially when the measurements are projective. The
standard von Neumann Hamiltonian used to model projective measurements cannot be implemented
directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively
generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate
and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as
measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal
measurements. We show how the protocol can be used to probe a version of Hardy’s paradox with both
weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the
pre- and postselected system. Our results shed new light on the interplay between quantum measurements,
uncertainty, nonlocality, causality, and determinism.
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Many fundamental questions in quantum mechanics
concern measurements and their effects. Much progress
has been made regarding the measurability of various,
formally defined, “observables” under realistic constraints,
with a special emphasis on relativistic and temporal
constraints [1–5], but many questions remain open. In
light of relativistic constraints, it is known that measure-
ments cannot violate causality; this limits the types of
instantaneous projective measurements that can be made
on spacelike separated systems [6,7]. Such instantaneous
measurements are of interest for a number of reasons. From
a fundamental perspective, we are often interested in
spacelike separated subsystems, such as EPR (Einstein-
Podolsky-Rosen) pairs, where communication would rule
out the nonlocal aspect of an argument. From a practical
perspective, we want to avoid adaptive schemes, even at the
cost of nondeterministic protocols, e.g., linear optics
schemes with postselection [8].
While only a few nonlocal observables can be measured

instantaneously with a projective measurement [2], many
others can be measured in a destructive way [9,10]. The
latter schemes produce the desired probabilities for the
outcomes of the measurement. However, they give an
unfavorable information gain–disturbance trade-off and
usually have a random state at the output, independent
of the input state and measurement result. In this Letter we
present the erasure scheme for effectively creating the von
Neumann measurement Hamiltonian for a large class of
nonlocal and other nonstandard observables. It can be used
for making strong projective (Lüders [11]) measurements,

weak measurements, and measurements at any intermediate
strength. Although it can be used for measuring a wide
verity of observables, we focus on nonlocal product
observables due to their significance.
We call an operator Ω on a bipartite system (or Hilbert

space) HS ¼ HA ⊗ HB a nonlocal product observable
when Ω ¼ A ⊗ B and A, B are Hermitian operators on
HA and HB, respectively. We usually consider two observ-
ers Alice (A) and Bob (B) with access to HA and HB,
respectively, such that in the relevant time intervalA and B
are spacelike separated. As a consequence the subsystems
cannot interact and Ω cannot be measured directly. We call
the instantaneous measurement of an observable on a
spacelike separated system a nonlocal measurement.
Nonlocal product observables play a significant role in

quantum theory, for example, CHSH (Clauser-Horne-
Shimony-Holt) observables [12], semicausal measurements
[1], nonlocality without entanglement [13], and stabilizer
codes [14]. In some cases, such as the CHSH experiment, it
is sufficient to extract the result by making local measure-
ments of A and B. Such local measurements disturb the
system more than the ideal nonlocal measurement (see
Ref. [15] for examples) and cannot be used in other cases
such as quantum error correction and state discrimination,
where the outgoing state is as important as the result. In the
case of weak measurements, the correlations between local
measurements are of second order and a local method does
not give the desired result [25,26]. Weak measurements of
nonlocal product observables also play an important role
in our understanding of quantum mechanics. Examples
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include Bell tests [27–29], nonlocality via postselection
[30], and the quantum pigeonhole principle [30,31]. They
also play a role in other scenarios such as quantum
computing [32]. Here, we demonstrate their significance
with a variant of Hardy’s paradox [33]. Despite various
attempts to find a scheme for nonlocal measurements with a
weak limit [25,34,35] the erasure scheme below is the first
scheme that has both a weak and a strong limit for a wide
variety of nonlocal and other general observables.
The von Neumann scheme.—The standard quantum

mechanical model for a measurement was introduced
by von Neumann and later improved by Lüders [11] for
degenerate observables. To measure an observable ΩS on a
system S we need to couple it to a second quantum system,
the meter M, that will register the result of the measure-
ment by the shift of a pointer variable QM [36]. The
coupling Hamiltonian is

HI ¼ fðtÞΩSPM; ð1Þ

where PM is the conjugate momentum to QM and fðtÞ is
usually an impulse function, which is nonvanishing only
around the time of the measurement. The interaction
strength is g ¼ R

τ
0 fðtÞdt. While formally one can write

this Hamiltonian for any Hermitian operator ΩS on S,
it may be impossible to implement it physically, e.g.,
when ΩS is a nonlocal product observable. It is, however,
possible to replace the unitary evolution U ¼ eigΩ

SPM
with

an isometry V such that, for a fixed initial meter state j0iM
we get VjψiSj0iM¼UjψiSj0iM¼P

kakjkiSjλkiM, where
jψiS ¼ P

kakjkiS is an arbitrary system state and the jkiS
are eigenstates of ΩS, ΩSjkiS ¼ λkjkiS . While the imple-
mentation of V induces the desired dynamics, it may have
two drawbacks: first, it may depend on the initial state of
the meter; second, it might not have a free parameter
corresponding to the measurement strength g. Both appear
in standard nonlocal measurement schemes such as modu-
lar measurements [2].
After the measurement, the system state is dephased in

the eigenbasis of ΩS; however, if ΩS is degenerate, each
degenerate subspace remains coherent. The measurement is
usually followed by reading out the state of the pointerQM.
When the shift in QM is large compared to the uncertainty
ΔQ, i.e., hλkjλli ≈ δðλk − λlÞ, the measurement is strong and
the result of a single measurement is unambiguous; thus,
dephasing is complete. When the possible shift in Q is
much smaller than ΔQ, we have a weak measurement.
Within the von Neumann model this can be achieved by
choosing the coupling strength g to be small enough, or by
increasing ΔQ. As a result of the weak measurement, the
system is only slightly dephased.
Weak measurements allow us to ask questions about a

system at an intermediate time between an initial prepa-
ration of the state jψi (preselection) and a final projective

measurement leading to jϕi (postselection), without mak-
ing counterfactual statements. The result is a complex
number called the weak value

fΩgw ¼ hϕjΩjψi
hϕjψi : ð2Þ

Although the read-out requires many identical experiments,
in each experiment the result is encoded in a quantummeter
whose dynamical evolution is dictated by a weak potential
term in the Hamiltonian Hw ¼ fΩgwPM [37].
Quantum erasure.—A description of a quantum eraser

[38–41] is simple when the meter has a discrete Hilbert
space and fjλkiN g is an orthonormal basis. Before the read-
out stage it is possible to undo or erase the measurement
locally inN by measuring in the conjugate basis to fjλkiN g
and postselecting the result corresponding to the POVM
element ΠN

þM ¼ j þMihþMjN with j þMiN ¼ P
kjλkiN

ΠN
þM½UjψiSj0iN � ∝ jψiSj þMiN : ð3Þ

The erasure procedure is probabilistic, but we can make
it deterministic by considering all POVM elements and
adding a unitary operation at the end.
Note: A scheme for erasing weak measurements [42] and

a relation between weak measurement and erasure [43]
were recently proposed. In contrast, our method below
utilizes the quantum erasure of a strong measurements as a
tool for performing general measurements.
Main result.—The erasure scheme below involves

two meters: N and M. The pointer for N is QN so
QN jλkiN ¼ λkjλkiN ; likewise, QM is the pointer for M.
Proposition 1 It is possible to induce the von Neumann

coupling between S and M by making a strong measure-
ment of S with N and erasing the result.
Proof.—Let

P
kakjkiSjλkiN be the system meter

state after a strong measurement. The second meter M
is in the arbitrary initial state j0iM. We now let M interact
with N using the unitary eigQ

NPM

eigQ
NPM

X

k

akjkijλkij0i ¼
X

k

akjkijλkieigλkPM j0i

and then erase using ΠþM

ΠþM

X

k

akjkijλkieiλkPM j0i ∝
X

k

akjkij þMieigλkPM j0i:

This is the dynamics induced by the Hamiltonian (1). □
In the following we show how this method can be used

for measurements of nonlocal product observables.
Measurement of product observables.—The challenge

with measuring a nonlocal observable is to couple to the
degenerate subspaces according to the Lüders rule. Given a
bipartite system and two local Hermitian operatorsX onHA
and Y onHB, the degenerate subspaces of XY are generally
different from those of the local observables X and Y.
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The erasure procedure above can be used to remove the
redundant information encoded locally. Below we combine
this method with a remote measurement to produce the
Hamiltonian (1) with ΩS → XY (see Fig. 1).
N is prepared in an entangled state on the Hilbert space

HN ¼ HAN
⊗ HBN

, which depends on the properties of X
and Y. M is local at Bob’s side and has an initial state
jq ¼ 0i. Alice locally couples the entangled N to her
subsystem, performing a strong measurement with the
result encoded nonlocally (i.e., Alice cannot access the
result alone). Alice then reads out the state of her strong
meter. This teleports the result to Bob (possibly with a
known offset). Next, Bob performs the procedure outlined
in the proof of Proposition 1. The resulting dynamics
is U ¼ eigXYP.
Details: We define the sets of orthogonal projectors

fX̂kg, fŶlg such that X ¼ Pjxj
k¼1 xkX̂k and Y ¼ Pjyj

l¼1 ylŶl,
where fxkg and fylg are the sets of distinct eigenvalues of X
and Y with cardinality jxj and jyj, respectively. Assume
(without loss of generality) that jxj ≤ jyj. N will have
dimension jxj × jxj and will be prepared in the initial

entangled state jþxiN ¼ð1= ffiffiffiffiffijxjp ÞPjxj−1
m¼0 jmiAN jmiBN .

The system is initially in the unknown state jψi ¼P
i;kαi;kji; kiA;B. We denote the global (A; B;N ;M) initial

state by jΨ0i. We also define Kμ ¼
P

kðk − μÞXk. The
scheme is as follows.
1. Alice couples K0 andN using Usjiijmi ¼ jiijmþ ii,

producing

jΨ1i ¼
X

m

X

i;k

αi;kji; kiA;Bjmþ i; miAN ;BN jq ¼ 0i:

2. Alice reads out N A and gets a result corresponding to
jμi. Thus,

jΨ2i ¼
X

i;k

αi;kji; kiA;BjμiAN jμ − iiBN jq ¼ 0i: ð4Þ

Note that the label μ − i is modular, i.e., jμ − iiBN ¼
jμ − i� jxjiBN .
3. Bob now has access to the operator Kμ, so he can

couple to ΩN
μ ¼ ½Pkxk−μXk� ⊗ Y using the local interac-

tion Hamiltonian YBQBNPM, where QBN jμ − iiBN ¼
xi−μjμ − iiBN .
4. Bob erases Alice’s measurement with probability

1=jxj. If he succeeds, the effective S −M dynamics is
U ¼ eigΩ

S
μPM

.
For μ ¼ 0 this is the desired observable, and in some

special cases it is a simple rescaling for all μ [15]. The worst
case measurement will succeed with probability 1=jxj2
(both erasure and μ ¼ 0 are required) while the best
case will succeed with probability 1=jxj (only erasure is
required). In either case failure would correspond to a
nontrivial (but known) unitary evolution during the interval
between pre- and postselection. For a more detailed
description see Ref. [15].
Determinism and nonlocality.—The protocol is probabi-

listic; however, it can be turned into a deterministic protocol
if Alice and Bob are allowed to communicate. This is to be
expected since the von Neumann Hamiltonian of a product
operator measurement (or even the less general isometry V)
can be used for signaling between Alice and Bob [6,7]. The
entanglement and communication resources for our scheme
are at most equivalent to a single round of teleportation.
This can be compared to the naive strategy of teleporting,
measuring, and teleporting back. In the example below,
and the one in Ref. [15], we show that the communication
cost of our scheme saturates the lower bound imposed by
causality.
However, the motivation for the protocol is the fact that it

can be implemented without communication or adaptive
components. The nonlocal paradox below is a good
example of a situation where communication is not allowed
by assumption, as is the case with the Bell inequality. From
a practical perspective we can easily imagine other sit-
uations such as linear optics, where the resources necessary
for an adaptive scheme that requires communication out-
weigh the advantage of a deterministic protocol [8].
In a postselected scenariowith a future boundary condition

jϕiA;B, it is possible to include the postselection requirement
for the measurement in the future boundary conditions.
The preselected system would then be jψiA;BjþxiAN ;BN ;
the postselection would be jϕiA;Bj0iAN j þMiBN . TakingUs
into account gives

FIG. 1. Nonlocal measurement based on quantum erasure. The
strong measurement requires Alice and Bob to locally couple
their system to an entangled meter (the ancilla N ). Alice then
measures her part N A, effectively “pushing” the result of the
strong measurement to Bob’s N B. Bob performs the weak
measurement of N B using M and then erases the information
encoded on N (undoing the initial coupling). If successful they
induce the von Neumann Hamiltonian (1)
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fYQBN gw ¼ hþMjh0jhϕjU†
sYQBN jψijþxi

hþMjh0jhϕjU†
s jψijþxi

¼ fXYgw:

Example.—Consider a two qubit system, where Alice and
Bob each have local access to a single qubit. The observables
of interest are the local projectors Πm;· ¼ jmihmj ⊗ 1,
Π·;m ¼ 1 ⊗ jmihmj and the nonlocal projector Πm;n ¼
Π·;mΠn;· ¼ jmihmj ⊗ jnihnj with m; n ∈ f0; 1g. Now let
M be a meter with conjugate momentum PM located on
Bob’s side. Our scheme allows us to create the effective
interactionHamiltonianH ¼ Πm;nPM with probability 1

4
, the

maximal probability allowed by causality constraints [15].
The explicit scheme is as follows (see Fig. 2): The

ancilla N is prepared in the entangled state jþxi ¼
1ffiffi
2

p j00þ 11iAN ;BN ; Us is a CNOT between AN and

Alice’s subsystem. The interaction with M is a controlled-
controlled W between B, BN and M with W ¼ eigP

M
.

Following the interactions, Alice and Bob postselect the
state j0iAN jþiBN on the ancilla (with probability 1

4
). The

induced transformation is U ¼ eigΠ1;1PM
. Bob can choose g

to make the measurement weak or strong.
In principle, Alice and Bob do not need to coordinate

their actions. They can each freely choose which operator
to couple without notifying the other. Moreover, Bob can
choose W ¼ eigP

M
without notifying Alice.

A nonlocal paradox.—In the EPR scenario, a bipartite
system has a definite state with respect to a nonlocal
observable but has randommarginals [44]. In a postselected
regime it is possible to observe the opposite behavior,
i.e., a system with definite local properties but uncertain
nonlocal ones. Let jψHi ¼ 1ffiffi

2
p ½j0ij−i − j1ijþi� be a

preselected state and jϕHi ¼ jþijþi be the postselection.
If either Alice or Bob make a local measurement of Π1;· or
Π·;1, respectively, they will expect the result 1 with
certainty. This follows from the Aharonov-Bergman-
Lebowitz formula for calculating probabilities on pre- and
postselected systems [45]. If this were a classical scenario,
it would have implied that a measurement of Π1;1 should
also produce the outcome 1 deterministically. However, the
probability of obtaining the outcome 1 for a measurement
of Π1;1 is 1

2
.

The scheme presented in the previous section allows
us to directly measure Π1;1. If instead we measure Π1;1
indirectly via Π1;· and Π·;1, we will get the results 1,1 with
probability 1

4
(see Ref. [15] for details).

One may see the paradox as a result of measurement
disturbance. Weak measurements let us avoid this issue.
The local weak values are fΠ1;·gw ¼ fΠ·;1gw ¼ 1, while
the nonlocal one is fΠ1;1gw ¼ 1

2
. Here, we see the full

power of our scheme. It allows the first direct measurement
of these weak values.
Nonlocal weak measurements were previously used to

provide an elegant solution to Hardy’s paradox [33,46].
The same logic applies in the example of above. The
nonlocal weak values are fΠ1;1gw ¼ fΠ0;1gw ¼ fΠ1;0gw ¼
−fΠ0;0gw ¼ 1

2
. The last weak value is negative and ensures

the weak values add up to 1. In Hardy’s experiment it
can be associated with negative occupation numbers
in an interferometer. Using Pusey’s construction [47] it
is possible to show that the negative weak value is a
result of contextuality. In this case the context is the
information of the measurement regarding local
observables.
Generalizations.—It is possible to generalize the erasure

scheme to other types of operators Ω. If the measured
operator is separable, like the Bell operator, it is possible
to measure each product operator and add the results on a
single meter [25]. It is also possible to perform more
general measurements of a degenerate observable by
decomposing the measurement into extremal POVMs
[48] and using the erasure technique to coarse grain the
outcome. Another class of measurable operators is non-
Hermitian operators resulting from sequential measure-
ments. These measurements are natural in various settings
such as tests of contextuality and Leggett-Garg inequalities
and measurements of quantum trajectories [28,49–51].
The specifics of an erasure based sequential measurement
scheme are given elsewhere [52].
Finally, measurements are only one possible application

of the Hamiltonian (1). The erasure scheme can be
modified to generate this Hamiltonian under a wide set
of constraints that prevent the direct coupling of a system
M to a degenerate operator ΩS. In the Supplemental
Material [15], we show how to use the erasure technique
to construct a generic controlled-controlled-unitary gate in

FIG. 2. Instantaneous measurement of Π1;1. To measure the
nonlocal observable Π1;1 ¼ j11ih11j Alice and Bob need an
entangled ancilla N and a local meter M (on Bob’s side). They
locally couple using a CNOT on Alice’s side and a controlled-
controlled W on Bob’s side with W ¼ eigP

M
. The value of g

determines the measurement strength. After a successful (local)
postselection of the state j0þi for the ancilla the effective system-
meter coupling will be eigΠ1;1PM

.
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cases where the relevant qubits cannot interact, a common
restriction for photonic qubits.
Conclusions.—We presented the erasure scheme for

effectively creating a von Neumann measurement
Hamiltonian for a nonlocal observable. It is based on the
fact that it is possible to perform a von Neumann meas-
urement by making a strong measurement and erasing the
result (Proposition 1).
The scheme has a number of advantages over known

schemes for instantaneous nonlocal measurements. It can
be used in the strong, intermediate, and weak regimes; so
far this range was only possible for the special case of sum
observables [25]. It is also versatile in terms of the types of
observables that can be measured; other schemes such as
the modular measurement [2] or the Kedem-Vaidman [35]
and Resch-Steinberg (RS) [34] schemes can only be used
for specific subsets of nonlocal observables and cannot be
further generalized [15]. Another advantage is that it can be
used for a much wider class of observables than those
presented here, for example, multipartite observables and
non-Hermitian operators [52].
Causality constraints imply a probabilistic scheme.

However, with clever postprocessing and correction tech-
niques it can be used to get a result on every possible run.
In some cases, causality constraints rule out the possibility
that the outcome would always correspond to the desired
observable. “Failing” postselection would either give a
result for a different operator and/or act like a known
unitary in the intermediate time between the pre- and
postselection. It is possible to avoid these constraints in
postselected scenarios by including the probabilistic
element in the postselection. The limitations of the scheme,
and the possible ways to overcome them, demonstrate the
subtle interplay between causality, determinism, and quan-
tum measurement.
The scheme has many potential uses. Here, we high-

lighted its role in tests of quantum foundations in nonlocal
scenarios. In a future publication [52] we will show that
the scheme can be used for sequential experiments such
as those used in tests of contextuality and Leggett-Garg
inequalities. In these sequential scenarios the measurement
is not instantaneous but the causality constraints are stricter
since they explicitly involve communication backwards
in time.
Regarding experimental realizations, the scheme is

feasible in optics and other platforms such as NMR [53]
and atomic spontaneous emission [54]. For a weak meas-
urement it has a significant advantage over the RS scheme
[34,55] since the resources required are linear in g as
opposed to the RS scheme that scales quadratically [15]. It
would be interesting to see if current methods can be used
to perform the full version of these techniques including
the correction and postprocessing steps. It would also be
interesting to find further applications for the erasure
method such as improved experimental accuracies [56]

or protective tomography [57] at the weak limit or error
correction at the strong limit [58], or for generating many-
body interactions under realistic constraints [15].
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