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We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite
systems where both parties work together to generate the maximal possible coherence on one of the
subsystems. Only incoherent operations are allowed on the target system, while general local quantum
operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent
operations and classical communication. We show that the asymptotic rate of assisted coherence distillation
for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose
properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it
quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance
from a collaborative party. Our results are generalized to coherence localization in a multipartite setting
and possible applications are discussed.
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Introduction.—Quantum coherence represents a basic
feature of quantum systems that is not present in the
classical world. Recently, researchers have begun devel-
oping a resource-theoretic framework for understanding
quantum coherence [1–9]. In this setting, coherence is
regarded as a precious resource that cannot be generated or
increased under a restricted class of operations known as
incoherent operations [2,3]. A resource-theoretic treatment
of coherence is physically motivated, in part, by certain
processes in biology [10–12], transport theory [2,13,14],
and thermodynamics [7,15,16], for which the presence of
quantum coherence plays an important role.
In this Letter, we consider the task of assisted coherence

distillation. It involves (at least) two parties, Alice (A) and
Bob (B), who share one or many copies of some bipartite
state ρAB. Their goal is to maximize the quantum coherence
of Bob’s system by Alice performing arbitrary quantum
operations on her subsystem, while Bob is restricted to just
incoherent operations on his. The duo is further allowed
to communicate classically with one another. Overall,
we refer to the allowed set of operations in this protocol
as local quantum-incoherent operations and classical com-
munication (LQICC). As we will show, the operational
LQICC setting reveals fundamental properties about the
quantum coherence accessible to Bob. In particular, the von
Neumann entropy of his state, SðρBÞ, quantifies precisely
how much extra coherence can be generated in Bob’s
subsystem using LQICC than when no communication is
allowed between him and any correlated party.
Alice and Bob’s objective here is analogous to the task of

assisted entanglement distillation. In the latter, entangle-
ment is shared between three parties, A, B, C, and the goal

is for B and C to obtain maximal bipartite entanglement
when all parties use (unrestricted) local operations and
classical communication (LOCC). The corresponding
maximal entanglement that can be generated between B
and C is known as the “entanglement of collaboration”
[17]. Henceforth, here we define the “coherence of col-
laboration” as the maximum coherence that can be gen-
erated on subsystem B by LQICC operations. In general,
both LOCC and LQICC protocols can be very complicated,
involving many multiple rounds of measurement and
communication [18]. A simplified scenario considers
one-way protocols in which Alice holds a purifying system,
and only she is allowed to broadcast measurement data.
The maximum entanglement for B and C (maximum
coherence for B) that can be generated in this manner is
called the “entanglement of assistance” (EOA) [19] [the
“coherence of assistance” (COA)]. In the asymptotic setting
the entanglement of assistance is known to be equal to the
entanglement of collaboration if the overall state is pure
[20]. We show an analogous result for coherence: for pure
states the coherence of assistance is equal to the coherence
of collaboration in the asymptotic setting, and a closed
expression for these quantities is also provided. Moreover,
when Bob’s system is a qubit and the overall state is pure,
the coherence of assistance and the coherence of collabo-
ration are equivalent even in the single-copy case. Finally,
we also present a generalization to a multipartite setting
where many assisting players collaborate to localize coher-
ence onto a target system, and discuss possible applications
to quantum technologies.
Resource theory of coherence.—The starting point of

our work is the resource theory of coherence, introduced
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recently in [2–4,8]. In particular, a quantum state ρ is said to
be incoherent in a given reference basis fjiig if the state is
diagonal in this basis, i.e., if ρ ¼ P

ipijiihij with some
probabilities pi. For a bipartite system, the reference basis
is assumed to be a tensor product of local bases [4,5,8].
A quantum operation is said to be incoherent if each of

its Kraus operators Kα is incoherent, i.e., if KαIK
†
α ⊆ I ,

where I is the set of incoherent states. In this theory, a
general completely positive trace-preserving map Λ is said
to be incoherent if it can be represented by at least one set
of incoherent Kraus operators. Completely dephasing any
state ρ in the incoherent basis will generate the incoherent
state ΔðρÞ ≔ P

iqijiihij with qi ¼ hijρjii. Note this is
entire motivation for defining incoherent states as being
diagonal in some particular basis: they are the density
matrices obtained by erasing all off-diagonal terms through
the decoherence map Δ. If d is the dimension of the Hilbert
space of the system, the maximally coherent state is jΦdi ¼ffiffiffiffiffiffiffiffi
1=d

p P
ijii, and we let jΦi ≔ jΦ2i denote the “unit”

coherence resource state [3].
Similar to the framework of entanglement distillation

[21,22], general quantum states can be used for asymptotic
distillation of maximally coherent states via incoherent
operations. Formally, the distillable coherence Cd of a state
ρ is defined as CdðρÞ ¼ sup fR∶limn→∞ðinfΛ∥Λ½ρ⊗n�−
Φ⊗⌊Rn⌋∥Þ ¼ 0g, where ∥M∥ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
is the trace norm,

and the infimum is taken over all incoherent operations Λ.
Even more, a closed expression for the optimal distillation
rate was found recently by Winter and Yang [8], and turns
out to be equal to the relative entropy of coherence
introduced in [1,3]. Recall the relative entropy of ρ to σ
is defined as Sðρ∥σÞ ¼ −Trðρ log σÞ − SðρÞ, with SðρÞ ¼
−Trðρ log ρÞ being the von Neumann entropy of ρ.
Lemma 1.—The distillable coherence of ρ is [8]

CdðρÞ ¼ CrðρÞ ¼ S½ΔðρÞ� − SðρÞ; ð1Þ
where CrðρÞ is the relative entropy of coherence, defined
as CrðρÞ ¼ minσ∈ ISðρ∥σÞ.
Note that CdðρÞ > 0 if and only if ρ is not incoherent.
Coherence of collaboration.—We now move to the main

topic of this Letter, namely, the assisted distillation of
coherence. As mentioned earlier, in this setting two parties
Alice and Bob share many copies of a joint state ρ ¼ ρAB

and aim to maximize coherence on Bob’s system by
LQICC operations.
In order to make a quantitative analysis, we define the

distillable coherence of collaboration as the optimal rate,
i.e., the optimal number of maximally coherent states on
Bob’s side per copy of the shared resource state ρ, in the
assisted setting,

CAjB
d ðρÞ¼ supfR∶ lim

n→∞
ðinf

Λ
∥Λ½ρ⊗n�−Φ⊗⌊Rn⌋∥Þ¼0g; ð2Þ

where the infimum is taken over all LQICC operations Λ.
When Alice is uncorrelated from Bob, i.e., ρAB ¼ ρA ⊗ ρB,

then CAjB
d ðρABÞ reduces to the distillable coherence CdðρBÞ

which can be evaluated exactly using Lemma 1 [8]. In the
following, we are interested in understanding how the
assistance of Alice can improve Bob’s distillation rate, i.e.,

how larger CAjB
d ðρABÞ can be in comparison to CdðρBÞ. To

answer this question, we first note that the set of bipartite
states which can be created via LQICC operations, that will
be referred to as the set QI of quantum-incoherent (QI)
states, admits a simple characterization. Namely, all such
states have the following form:

χAB ¼
X

i

piσ
A
i ⊗ jiihijB: ð3Þ

Here, σAi are arbitrary quantum states on A, and the states
jiiB belong to the local incoherent basis of B. Note that QI
states have the same form as general quantum-classical
states [23] (i.e., states with vanishing quantum discord
[24]), except the “classical” part must be diagonal in the
fixed incoherent basis.

It is obvious that any QI state has CAjB
d ðρABÞ ¼ 0, and the

following theorem shows that the converse is true as well.
Theorem 2.—A state ρAB has CAjB

d ðρABÞ > 0 if and only
if the state ρAB is not quantum incoherent.
This theorem shows that any state which cannot be

created for free via LQICC operations constitutes a re-
source for extracting coherence on Bob’s side. For the proof
of the theorem we refer to the Supplemental Material [25].
In the next step, we will provide an upper bound on the

distillable coherence of collaboration. For this, we intro-
duce the QI relative entropy,

CAjB
r ðρABÞ ¼ min

χAB∈QI
SðρAB∥χABÞ; ð4Þ

with the minimization taken over the set of QI states. We

note that CAjB
r is different from the relative entropy of

discord introduced in [28,29], as the latter involves a
minimization over all bases of B, while Eq. (4) is defined
for a fixed incoherent basis fjiiBg. Using the same
reasoning as in [29] (see Theorem 2 there), it is straightfor-

ward to see that CAjB
r can also be written as

CAjB
r ðρABÞ ¼ S½ΔBðρABÞ� − SðρABÞ ð5Þ

with ΔBðρABÞ≔P
ið1⊗ jiihijÞρABð1⊗ jiihijÞ. Moreover,

since the relative entropy does not increase under general

quantum operations, CAjB
r is monotonically nonincreasing

under LQICC operations. The following theorem shows

that the QI relative entropy is an upper bound on CAjB
d .

Theorem 3.—Given a state ρAB shared by Alice and
Bob, the distillable coherence of collaboration is bounded
above according to

CAjB
d ðρABÞ ≤ CAjB

r ðρABÞ: ð6Þ
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The proof can be found in [25]. This result shows that
in the task considered here, the relative entropy plays
similar role as in the task of entanglement distillation [30],
bounding the distillation rate from above. Note that for
standard coherence distillation the relative entropy of coher-
ence is in fact equal to the optimal distillation rate [8], see
also Lemma 1. It is an open question if this is also true for the
task considered here, i.e., if the inequality (6) is an equality
for all quantum states ρAB. As we will see in Theorem 4
below, the answer is affirmative at least for pure states.
Coherence of assistance.—We now introduce the COA

for a state ρ as the maximal average coherence of the state,

CaðρÞ ¼ max
X

i

qiCrðψ iÞ ¼ max
X

i

qiS½Δðψ iÞ�; ð7Þ

where the maximization is taken over all pure-state decom-
positions of ρ ¼ P

iqijψ iihψ ij, and ψ i is denoting jψ iihψ ij.
To provide the COA with an operational interpretation,

it is instrumental to compare it with the EOA originally
proposed by DiVincenzo et al. [19]. For a bipartite state
ρBC, one identifies a decomposition of maximal average
entanglement,

EaðρBCÞ¼max
X

i

qiEðψBC
i Þ¼max

X

i

qiSðtrBψBCÞ; ð8Þ

for ρBC ¼ P
iqijψ iihψ ijBC. The interpretation of EOA

is that by using local measurement and one-way classical
communication, Alice can help Bob and Charlie
obtain an average entanglement of at most EaðρBCÞ when
they all share jΨiABC, a purification of ρBC. In this case,
any possible pure-state decomposition of ρBC can be
realized when Alice performs a suitable measurement
and announces the result [31]. If all the parties have access
to arbitrary number of copies of the total state jΨiABC,
the figure of merit is the regularized EOA E∞

a ðρÞ ¼
limn→∞ð1=nÞEaðρ⊗nÞ. For an arbitrary density matrix
ρBC, the regularized EOA is simply given by [20]

E∞
a ðρBCÞ ¼ minfSðρBÞ; SðρCÞg: ð9Þ

The COA defined in Eq. (7) has an analogous opera-
tional meaning if we assume that the state ρ ¼ ρB belongs
to Bob, who is assisted by another party (Alice) holding a
purification of ρB. Through local measurement, Alice can
prepare any ensemble for Bob that is compatible with ρB,
which is why we take the maximization in Eq. (7). Together
with Lemma 1, then, CaðρBÞ quantifies a one-way coher-
ence distillation rate for Bob when Alice applies the same
procedure for each copy of the state. In the many-copy
setting, higher one-way distillation rates can typically be
obtained when Alice performs a joint measurement across
her many copies. Thus, we consider the regularized COA
defined as C∞

a ðρÞ ≔ limn→∞ð1=nÞCaðρ⊗nÞ.

As we prove in [25], the COA of a state ρ ¼ P
i;jρijjiihjj

is equal to the EOA of the corresponding maximally
correlated state [32] ρmc ¼

P
i;jρijjiiihjjj,

CaðρÞ ¼ EaðρmcÞ: ð10Þ
Clearly, Eq. (10) implies that this equality is also true for
the regularized quantities,C∞

a ðρÞ ¼ E∞
a ðρmcÞ. UsingEq. (9),

the regularized COA thus acquires the simple expression

C∞
a ðρÞ ¼ S½ΔðρÞ�: ð11Þ

Equipped with these tools, we are now in position to

provide a closed expression for CAjB
d for all pure states.

Theorem 4.—For a pure state jΨiAB shared by Alice and
Bob, the following equality holds:

CAjB
d ðjΨiABÞ ¼ C∞

a ðρBÞ ¼ CAjB
r ðjΨiABÞ ¼ S½ΔðρBÞ�: ð12Þ

The proof of the theorem can be found in [25].
With Theorem 4 in hand, we give the von Neumann
entropy an alternative operational interpretation. Namely,
let δCdðρBÞ denote the maximal increase in distillable
coherence that Bob can obtain when exchanging classical
communication with a correlated party: i.e., δCdðρBÞ¼
maxρAB ½CAjB

d ðρABÞ−CdðρBÞ�, where the maximization is
taken over all extensions ρAB of ρB. Noticing that the
maximum is attained if ρAB is pure, Lemma 1 and Theorem
4 imply that

δCdðρBÞ ¼ SðρBÞ: ð13Þ
Interestingly, this result does not depend on the particular
choice of the reference incoherent basis.
Let us turn to the obvious inequality CaðρBÞ ≤ C∞

a ðρBÞ
and ask whether Ca is additive, in which case the inequality
becomes tight. This question is especially interesting when
one considers Ref. [8] where the coherence of formation,
defined with a minimization rather than a maximization in
Eq. (7), and thus a dual quantity to the COA, is shown to be
additive. Below, we will show that in contrast, COA fails to
exhibit additivity in general. Nevertheless, when restricting
attention to n copies of an arbitrary single-qubit state ρ,
additivity of COA can be proven. The latter finding is quite
noteworthy since no analogous result is known for EOA in
two-qubit systems.
Theorem 5.—COA is n-copy additive for qubit states ρ,

CaðρÞ ¼ C∞
a ðρÞ ¼ S½ΔðρÞ�: ð14Þ

However, in general, the COA is not additive.
We refer to [25] for the proof. It is interesting to note that

we prove non-additivity for systems with dimension 4 and
above. Thus, it remains open if Ca is additive for qutrits.
Note that by Theorem 4, this result implies that optimal
coherence distillation for single-qubit systems involves just
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one-way communication and single-copy measurements
from a purifying auxiliary system.
Multipartite scenario.—We now extend our results to the

multipartite setting. When more than one party is providing
assistance, the process of collaboratively generating coher-
ence for Bob’s system will be called coherence localization,
in analogy to the task of entanglement localization [33].
We consider (N þ 1)-partite states ρA1;…;ANB, where the

parties A1;…; AN are allowed to perform arbitrary local
quantum operations, and the party B is restricted to
incoherent operations only. Additionally, classical commu-
nication is allowed between all the parties. The aim of all
the parties is to localize as much coherence as possible on
the subsystem of B. The corresponding asymptotic coher-
ence localization rate can be defined just as in Eq. (2) and

will be denoted by CA1;…;AN jB
d ðρA1;…;ANBÞ. For total pure

states with B being a qubit we find that, quite remarkably,
individual measurements on the auxiliary systems can
generate the same maximal coherence for the target system
B as when a global measurement is performed across
all the auxiliary systems A1;…; AN .
Theorem 6.—Let jΨiA1;…;ANB be an arbitrary multipar-

tite state with system B being a qubit. Then

CA1;…;AN jB
d ðjΨiA1;…;ANBÞ ¼ CAtotjB

d ðjΨiAtotBÞ ¼ SðΔðρBÞÞ;
ð15Þ

where Atot ¼ A1;…; AN is viewed as one party with the
locality constraint removed among the Ai.
The proof is deferred to [25]. This theorem implies that

for asymptotic coherence localization the assisting parties
A1;…; AN do not need access to a quantum channel: local
quantum operations on their subsystems together with
classical communication are enough to ensure maximal
coherence localization. This is true if the total state is pure,
and if coherence is localized on a qubit.
LQICC versus SLOCC protocols.—The proof of

Theorem 4 relied on relating the tasks of assisted coherence
distillation and assisted entanglement distillation. This
further supports a conjecture put forth in Ref. [8] that
the resource theory of coherence is equivalent to the
resource theory of entanglement for maximally correlated
states [32]. We can prove a more general connection
between LQICC operations in the coherence setting and
LOCC operations in the entanglement setting.
For a given bipartite state ρAB we define the association

ρAB ¼
X

ij

MA
ij ⊗ jiihjjB ⇒ ~ρABC ¼

X

ij

MA
ij ⊗ jiiihjjjBC;

ð16Þ
whereMij are operators acting on Alice’s space and fjiig is
the fixed incoherent basis. As we show in [25], if two states
ρAB and σAB are related via a bipartite LQICC map, i.e.,
σAB ¼ ΛLQICC½ρAB�, then the corresponding states ~ρABC and

~σABC are related via a tripartite stochastic LOCC (SLOCC)
map, i.e., ~σABC ¼ ΛSLOCC½~ρABC�. Thus any procedure
implementable “for free” in the framework of assisted
coherence has an equivalent probabilistic “free” implemen-
tation on the level of maximally correlated states. We find
that, in fact, for many LQICC transformations ρAB → σAB,
the corresponding LOCC transformation ~ρABC → ~σABC can
be implemented with probability one. It is an interesting
open question whether the (tripartite) LOCC analog to
every (bipartite) LQICC transformation has always a
deterministic implementation.
In the casewhere the subsystemA is uncorrelated, Eq. (16)

reduces to ρ¼P
ijρijjiihjj⇒ρmc¼

P
ijρijjiiihjjj. For this

situation, the above results imply that for any two states ρ and
σ ¼ Λi½ρ� related via an incoherent operation Λi, the corre-
spondingmaximally correlated states ρmc and σmc are related
via bipartite SLOCC: σmc ¼ ΛSLOCC½ρmc�. Moreover, in the
asymptotic setting where many copies of ρ are available,
the SLOCC procedure becomes deterministic whenever the
entanglement cost of σmc is not larger than the distillable
entanglement of ρmc. This criterion can be easily checked,
recalling that for these states the entanglement cost is equal to
the entanglement of formation [34,35], and their distillable
entanglement admits a simple expression [32].
Conclusions.—The results presented above are mainly

based on the new set of LQICC operations which were
introduced and studied in this Letter. This type of operations
arises naturally if two parties have access to a classical
channel, andone of theparties canperformarbitrary quantum
operations, but the other is limited to incoherent operations
only. The results presented here can be regarded as one
application of this set of operations. Very recently, alternative
applications for LQICCwere presented in [36,37], including
creation and distillation of entanglement [37] and imple-
mentation of quantum teleportation in a fully incoherent
manner [36]. LQICC operations have also been extended to
the class of local incoherent operations (for both parties)
supplemented by classical communication [36,37]. Further
applications closely adhering to realistic physical limitations
are expected in the near future.
There are in fact many scenarios of practical relevance

where the task of assisted coherence distillation can play a
central role. For instance, think of a remote or unaccessible
system on which coherence is needed as a resource (e.g., a
biological system): our results give optimal prescriptions
to inject such coherence on the remote target by acting
on a controllable ancilla. In a multipartite setting, one can
imagine distributing a correlated state among many parties
and implementing an instance of open-destination quantum
metrology, in which one party is selected to estimate an
unknown parameter [38] and the other parties act locally on
their subsystems in order to localize as much coherence
as possible on the chosen target, so as to enhance the
estimation precision. Similarly, the task can be a useful
primitive within a secure quantum cryptographic network
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[39], in which the distribution of nonorthogonal states
(and thus coherence) is required [12].
The approach presented here can also be extended to

other related scenarios. As an example, we mention the
resource theory of frameness and asymmetry [40,41]. The
relation of these concepts to the resource theory of coherence
proposed by Baumgratz et al. [3] has been studied very
recently [42]. In this context, an important set of quantum
operations is known as thermal operations [15,16]. These
operations are a subset of general incoherent operations [42].
It will be very interesting to see how the results provided here
change when local incoherent operations for one party are
further restricted to local thermal operations. This can be of
direct relevance to the design of optimal ancilla-assisted
work extraction protocols in thermodynamical settings [7].
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