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We perform experiments and phase model simulations with a ring network of oscillatory electrochemical
reactions to explore the effect of random connections and nonisochronicity of the interactions on the pattern
formation. A few additional links facilitate the emergence of the fully synchronized state. With larger
nonisochronicity, complex rotating waves or persistent irregular phase dynamics can derail the convergence
to global synchronization. The observed long transients of irregular phase dynamics exemplify the
possibility of a sudden onset of hypersynchronous behavior without any external stimulus or network
reorganization.
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Wave propagation of activity of oscillatory units in
rings or linear chains is a fundamental type of pattern
formation that occurs in many biological systems, e.g., the
motion of a leach [1], the segmentation clock [2], or brain
wave activities in the cortex [3]. A rotating pinwheel
was one of the first types of chemical pattern formation
identified in the Belousov-Zhabotinsky (BZ) reaction on a
ring [4]. As a ring geometry is often used in chemistry,
rotating phase wave patterns have been observed in a large
number of systems, e.g., in electrochemical reactions [5],
heterogeneous catalysis [6], coupled BZ reactors [7], and
microdroplets [8]. Mathematical analysis using phase mod-
els interpreted the existence and local stability of rotating
waves in ring networks [9–11]. It was found that the fully
synchronized, zero phase lag, nonrotating state is the most
attracting solution, locally and globally. However, with
increasing system size, rotating waves with higher winding
number become more probable in the aggregate [12].
Complex engineered and biological systems can often

be described as networks of discrete, interacting units [13].
Considering the prevalence of phase waves on rings
and chains, a fundamental question is how the rotating
waves manifest in networks that are composed of a regular
ring backbone with a few additional random connections.
Numerical simulations with phase models on sparse
directed networks with random initial phases have shown
that for sufficiently nonisochronous oscillations, while the
fully synchronized state is locally stable, persistent irregu-
lar phase dynamics is the typically observed behavior [14].
Such prolonged transient behavior can severely impact
system response when robust synchronization is required,
as it was demonstrated with power grid models [15] or
when synchronization is undesirable, e.g., in hypersyn-
chronous neuronal discharges during seizures [16].
In this Letter, we explore the type of spatiotemporal

patterns that can be obtained with oscillatory chemical

reactions on bidirectional ring networks with random
long-range connections. The experimental work is moti-
vated by phase model calculations that predict the presence
of complex rotating waves and long transients in small
random networks with sufficiently nonisochronous oscil-
lations. The experimental conditions allow the analysis of
the dependence of pattern formation on the randomness
of the network topology and the level of nonisochronicity
of the interactions among the units.
To study the properties of complex rotating waves on

networks we consider weakly coupled, identical limit cycle
oscillators with a Kuramoto type phase model [17] for
phase differences in a corotating frame of reference

_ϑn ¼
XN

m¼1

Anmgðϑm − ϑnÞ; ð1Þ

where Anm represents a coupling matrix and gðΔϑÞ is the
average effect of the coupling for oscillators with phase
difference Δϑ. A phase attractive coupling is assumed with
interaction function gðΔϑÞ ¼ sinðΔϑ − αÞ þ sinðαÞ. The
phase shift parameter α is an important system property
determined by the average shear flow near the limit cycle in
the direction of perturbation caused by coupling [17]; i.e., α
quantifies the nonisochronicity of the oscillations induced
by interactions. We note that since the dynamics of the
model equations [Eq. (1)] is invariant under a change of
α → −α, ϑ → −ϑ, and t → −t, the phase differences and
the frequency shift are inverted when α changes sign,
such that sources become sinks of rotating waves and vice
versa. We assume non-normalized, bidirectional coupling
Amn ¼ Anm ∈ f0; 1g on ring networks of N ¼ 500 oscil-
lators withNsc ¼ σN additional random bidirectional links.
The initial conditions for the simulations and the experi-
ments is a rotating wave on the ring. (Random initial
conditions give comparable results.)
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Because of phase attractive coupling g0ð0Þ ¼ cos α > 0
and the complete connectedness of the network, the fully
synchronized, one-cluster state is always a linearly stable
solution of Eq. (1) [14]. However, the typical behavior of
the network starting from globally desynchronized initial
conditions, is far more complex than the intuitively
expected relaxation to the one-cluster state. We characterize
the state of the system by different order parameters.
The k-cluster order parameters Rk ¼ hexpðikϑnÞi, where
the average is taken instantaneously over all oscillators,
measure the coherence of the distribution of phases into k
evenly spaced clusters. The variance var _ϑ of the phase
velocities is a measure for frequency synchronization.
These ensemble averaged measures are shown in the σ
vs α parameter plane in Figs. 1(a) and 1(b).
With small σ, the original ring is divided into linear

segments between the end points of shortcuts, which can
support traveling phase waves. At the interfaces where two
such traveling waves meet, the phase differences in a state
of stable synchronization are restricted. At low noniso-
chronicity and low shortcut density these interfaces can be
frozen when all topological boundary conditions can be
met simultaneously. We refer to such a pattern, which does
not change in time, as a frozen complex rotating wave
pattern. When the topological boundary conditions are not
met (this is likely to occur with a large number of
oscillators), slowly changing interfaces are obtained, rem-
iniscent of vortex glasses in 2D oscillatory media [18].
Both the Kuramoto order parameter R1 and the variance of
the phase velocities are small in this regime. When the
shortcut density is increased, there exists a topological
crossover to a random network without linear chain seg-
ments. Therefore, when σ is increased the system cannot
maintain rotating waves and the one-cluster state becomes
globally attractive with R1 ≈ 1. When α is increased from
zero, higher shortcut densities are required for complete
synchronization [Figs. 1(a)–1(c)].
At large values of nonisochronicity (α≳ 1) a qualita-

tively different type of behavior exists. The topological
boundary conditions for rotating phase waves along the
ring segments with stationary phase differences are very
difficult to satisfy simultaneously. Instead, the dominant
behavior is persistent irregular dynamics with nonzero
var _ϑ. The distribution of phase differences during the
transient and in frozen complex rotating patterns becomes
bimodal, suggesting a preferred phase difference that
depends on α [Fig. 2(b)]. The emergence of persistent
irregular dynamics is demonstrated in Fig. 1(d) by fixing
the shortcut density σ, and increasing the value of α. At the
transition between frozen and unfrozen complex rotating
patterns, global clustering can arise resulting in a sharp
increase in the order parameters R6 or R7. This global order
is mediated by the end points of the shortcuts in the
network [Fig. 2(f)] Because of the narrow distribution of
phase differences in a phase locked state, oscillators at the

same distance to a cross-linked node have the same phase.
Global clustering is only observable in a narrow parameter
region at criticality and after a long, system size dependent
transient.
In addition, around the transition point, before a complex

rotating wave pattern becomes frozen, very long transient
dynamics can be observed. Figure 2 shows an example of
such transient dynamics, from random initial conditions
and with negative nonisochronicity. The time evolution of
next-neighbor phase differences demonstrates the compe-
tition between different phase patterns, with stationary
sinks of the phase waves located at the network hetero-
geneities and dynamically rearranging sources which may
form or annihilate upon collision with a sink or at phase
slip events. Figures 2(d) and 2(e) show a transient and a
stationary phase profile, respectively, and Fig. 2(b) illus-
trates the time evolution of the phase difference distribu-
tion. The phase differences in the stationary phase pattern
are peaked sharply around 2π=7 resulting in a very precise
wavelength and the formation of 7 global phase clusters.
As shown in Fig. 1(a), there also exists a narrow regime of
partial synchronization for larger shortcut densities, which
is replaced in a sharp discontinuous transition by persistent
incoherent phase dynamics at values of α approaching π=2
and which may be analyzed in a mean field approach [19].
To confirm the modeling results, experiments were

performed with an array of N ¼ 20, 1.00 mm diameter

FIG. 1. Order parameters in model (1) at time t ¼ 500 as
functions of shortcut density σ and nonisochronicity parameter α
averaged over ten random network realizations with N ¼ 500
oscillators and rotating wave initial conditions. (a) Color coded
Kuramoto order parameter R1 and (b) variance var _ϑ of phase
velocities. The black and the white lines in (a) and (b),
respectively, mark the contour of R1 ¼ 0.9. The light (green)
line marks the contour line of var _ϑ ¼ 0.2. (c) Kuramoto order
parameter as a function of σ for three different values of α
[cf. Fig. 3(c)]. (d) Mean cluster order parameters R6, R7, and
variance of phase velocities as functions of α at σ ¼ 0.15.
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nickel wires on which an oscillatory metal dissolution
reaction takes place measured by currents. Numerical
simulations indicate (see Supplemental Material [20],
which includes Ref. [21]) that regions of frozen rotating
patterns, complete synchronization, and irregular phase
dynamics can be clearly distinguished even in such a small
setup. The electrodes are coupled into a ring topology with
additional random cross-connection via resistances and
capacitances. We report the conductance across the cou-
pling resistance as coupling strengthK. Capacitance is used
to introduce nonisochronicity through a phase shift in the
coupling current [20,21]. The initial condition of the
experiment is a rotating wave as shown in Fig. 3(a).
First, we describe the results with α ¼ 0, i.e., resistive
coupling. When a random cross-connection was added, one
of two scenarios occurred. If the random shortcut con-
nected two elements at a distance larger than 4 units, the
system quickly converged to a fully synchronized state

similar to that shown in Fig. 3(b). When the distance
between the shortcut elements was smaller, the rotating
waves jumped across the connection. Figure 3(d) shows
such a pattern with two cross-connections.
We have performed 16 independent trials adding cross-

connections successively to a ring configuration. The mean
order parameter as a function of the added number of
shortcuts is shown in Fig. 3(c). Only three shortcuts were
required for the average order parameter to exceed 0.90.
Therefore, we can conclude that with α ¼ 0 a relatively
small number of shortcuts (σ ≈ 0.15) induces full syn-
chrony. When α was changed to −0.97, with a parallel RC
coupling, we still observed rotating waves jumping over the
connection when the first cross-connection was placed up
to a distance of 5 units between the elements. However,
when the distance was larger, instead of full synchroniza-
tion, we observed a frozen complex rotating pattern via the
formation of a source and sink pair [Fig. 3(e)]. The order
parameter vs number of shortcuts graph in Fig. 3(c) shows

FIG. 2. Long transient to a complex frozen rotating wave
pattern from random initial phases in a network ofN ¼ 500 phase
oscillators with α ¼ −1.15 and shortcut density σ ¼ 0.05.
(a) Ring network with 26 additional random shortcuts. (b) Time
evolution of the density of next neighbor phase differences. The
solid (red) line marks the average of jΔϑj. (c) Time evolution of
next neighbor phase differences modulus π (color coded). Dark
(blue) colors indicate phase waves to the right and light (red)
colors indicate phase waves to the left. The white lines indicate
phase profiles ϑn between 150 ≤ n ≤ 250 shown in (d) at t ¼ 300
and (e) at t ¼ 500. Large (red) circles and solid (red) lines in
panels (a),(d)–(f) indicate nodes with shortcut connections.
Black squares in panels (d),(e) indicate dynamically realized
centers of phase waves. Panel (f) shows clustering of the phases at
t ¼ 500 with R7 ≈ 0.9 and cross-links (solid lines) connecting
neighboring clusters.

FIG. 3. The impact of shortcuts and α on the formation of
complex rotating waves and on synchronization. (a) Initial
rotating wave (V ¼ 1105 mV, K ¼ 0.20 mS, α ¼ 0). (b) Syn-
chrony induced by one long-distance shortcut. (c) The mean
order parameter with increasing number of shortcuts at α ¼ 0
(circles), −0.97 (squares), and −1.3 (triangles). V ¼ 1110 mV,
Cc ¼ 82 μF, K ¼ 0.10 mS at α ¼ −0.97 and K ¼ 0.025 mS at
α ¼ −1.3. (d) Short distance shortcuts at α ¼ 0 yield jumping
waves (V ¼ 1110 mV). (e) Long distance shortcut at α ¼ −0.97
yields a frozen complex rotating pattern with a source (triangle)
away from the heterogeneity (V ¼ 1110 mV). (f) Long distance
shortcut at α ¼ 0.76 yields a frozen complex rotating pattern with
a source (full square) on the heterogeneity (V ¼ 1245 mV,
Cind ¼ 1 mF, K ¼ 0.40 mS).
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that with α ¼ −0.97 the mean order parameter starts to
increase for n > 3, and it requires a relatively large number
(n > 6) of random shortcuts to achieve Kuramoto order
larger than 0.90. The presence of jumping waves and
complex rotating wave patterns thus contributes to resisting
complete synchronization. When α was further changed to
−1.3, the trend of resisting the fully synchronized state
continued. Figures 3(e) and 3(f) demonstrate the inversion
of the stationary phase profile, and thus the direction of the
rotating waves and the reversal of source and sink, upon
switching the sign of the nonisochronicity by adding a
capacitance to the individual current instead of the coupling
current [20,21]. All the patterns in Fig. 3 were reproduced
by phase model simulations in the Supplemental Material
[20]. Long transients to both frozen complex wave patterns
and identical synchronization were observed in experiment.
A long transient over 1700 s in a network with five random
shortcuts near α ¼ −1.3 is shown in Fig. 4. The time
evolution of next neighbor phase differences during the
transient is shown in Fig. 4(a). At least two competing wave
patterns, which are metastable over the course of tens
of oscillations and transform via intermittent phase slips
could be observed for over 700 oscillations before the
system settled into the one-cluster state. At α ¼ 0 the
same network relaxes exponentially to synchronization in
230 s [20]. Numerical simulations with the phase model

confirmed that by changing α from 0 to −1.3 the lifetime of
the transient increases about 10 times and diverges as α
approaches jπ=2j [20]. A density plot of next neighbor
phase differences during and after the transient is depicted
in Fig. 4(b) and shows an asymmetric distribution with a
preferred wavelength, skewed towards the initial left-
handed rotational state. In addition, a wide distribution
of peak-to-peak periods can be observed during the
transient as seen in Fig. 4(c), which marks the presence
of irregular phase dynamics. A typical snapshot of a
transient complex rotating wave is shown in Fig. 4(d).
The arrows indicate the direction of the rotations as well as
the sources (oscillators 9 and 18) and sinks (oscillators 2
and 11) of the unstable rotational wave pattern. The order
parameter [Fig. 4(e)] clearly exhibits the transient behavior
as its value changes between approximately 0.2 and 0.6
irregularly throughout the transient until synchronization
is achieved.
In conclusion, we have observed frozen complex rotating

patterns and long transients to synchronization in electro-
chemical oscillations and numerical simulations of phase
oscillators on a ring network topology with sparse random
shortcuts. Depending on the sign of nonisochronicity α,
either the sinks or the sources are pinned to end points of
cross-connections in the network. At increased noniso-
chronicity the variability in the phase differences in a
phase locked state decreases until synchronization is no
longer possible and persistent, or very long transient phase
dynamics occurs. The presence of long transients of
irregular phase dynamics could have relevance in the
functioning of biological systems, e.g., in neuron dynamics
where pathological synchronization can occur without
apparent external perturbation or change of network
topology. The experimentally recorded, irregular transient
dynamics contributes to the few experimental examples of
high dimensional transient chaos [22], where system size
effects on the lifetime of the transient irregular state could
be studied.
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