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Active fluids such as swarming bacteria and motile colloids exhibit exotic properties different from
conventional equilibrium materials. As a peculiar example, a spherical tracer immersed inside active fluids
shows an enhanced translational diffusion, orders of magnitude stronger than its intrinsic Brownian motion.
Here, rather than spherical tracers, we investigate the diffusion of isolated ellipsoids in a quasi-two-
dimensional bacterial bath. Our study shows a nonlinear enhancement of both translational and rotational
diffusions of ellipsoids. More importantly, we uncover an anomalous coupling between particles’
translation and rotation that is strictly prohibited in Brownian diffusion. The coupling reveals a
counterintuitive anisotropic particle diffusion, where an ellipsoid diffuses fastest along its minor axis
in its body frame. Combining experiments with theoretical modeling, we show that such an anomalous
diffusive behavior arises from the generic straining flow of swimming bacteria. Our work illustrates an
unexpected feature of active fluids and deepens our understanding of transport processes in microbiological
systems.
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The diffusion of a small tracer in a surrounding medium
provides a reliable means for probing material properties
of complex fluids [1]. Particularly, such a method has been
used to investigate unique features of active fluids—a novel
class of nonequilibrium soft materials with examples across
a wide range of biological and physical systems including
flocking animals [2–4], vibrated granular beds [5], synthetic
colloidal swimmers [6,7], and a self-propelled cytoskeleton
[8,9]. The behavior of spherical tracers in active fluids ismost
clearly illustrated by the diffusion of colloidal spheres in
suspensions of swimmingmicroorganisms [10–18]. Because
of the hydrodynamic and steric interactions [19–23], a
colloidal particle immersed in a bath of microswimmers
exhibits a superdiffusive behavior at short times and a
dramatically enhanced translational diffusion at long times.
The enhanced diffusion of passive particles such as

nutrient granules, dead bacterial bodies, and extracellular
products is of great biological importance, which maintains
an active ecological balance [10], stimulates biomixing
[17], and promotes intercellular signaling and metabolite
transports [23]. However, few natural particles have the
perfect spherical symmetry and usually possess more than
translational degrees of freedom. It is still an open question
how and to what extent the enhanced translational diffusion
of an anisotropic particle is influenced by other degrees of
freedom, especially by its rotation. Furthermore, as one of
the most prominent features of active fluids, the emergent
collective motion of self-driven units leads to swarming
patterns [24,25], which strongly affect systems’ rotational
degrees of freedom. Thus, the rotational dynamics of aniso-
tropic particles also provide a way for probing intrinsic
properties of the swarming phase of active fluids [26].

In our experiments, we use suspensions of Escherichia
coli as our model active fluids (see the Supplemental
Material [27]). A bacterial suspension of concentration
n is suspended in a free-standing soap film, where n is
measured in the unit of n0 ¼ 8 × 108 cells=ml. The film is
adjusted to be 15� 5 μm in thickness and 5 × 5 mm2 in
area. Polystyrene ellipsoids are used as our anisotropic
tracer particles. In our study, we mainly focus on ellipsoids
with semiprincipal axes of length a ¼ b ¼ 2.8� 0.2 and
c¼ 14.2�0.5 μm and aspect ratio p≡c=a¼ 5.1, although
two other ellipsoids with different sizes and aspect ratios
are also tested (see Ref. [27] and Fig. 4).
Since the major axis of ellipsoids is larger than the thick-

ness of film, particles undertake a quasi-two-dimensional
motion in the bacterial bath. The diffusion of ellipsoids
is recorded with high-speed optical microscopy [Fig. 1(a)],
which allows us to extract the center-of-mass position,
xðtÞ ¼ ½xðtÞ; yðtÞ�, and the orientation, θðtÞ, of ellipsoids at
different times, t [Fig. 1(b)].
First,we analyze the translation and rotation of ellipsoids in

the lab frame. Figures 2(a) and 2(b) show ellipsoids’ trans-
lational mean-squared displacements (MSDT), h½ΔxðtÞ�i2 ¼
h½xðtþ t0Þ−xðt0Þ�2i, and rotational mean-squared displace-
ments (MSDR), h½ΔθðtÞ�2i ¼ h½θðtþ t0Þ − θðt0Þ�2i, at
different n, respectively. The two degrees of freedom exhibit
qualitatively similar trends.At short times, the particlemotion
appears to be superdiffusive following h½ΔxðtÞ�2i ∼ tδT and
h½ΔθðtÞ�2i ∼ tδR with the power exponents 1.5 ≤ δT ≤ 2.0
and 1.3 ≤ δR ≤ 1.6. At long times, the motion becomes
diffusive with δT;R ≈ 1.0. The corresponding diffusion
coefficients, defined in the diffusive regime as DT ¼
h½ΔxðtÞ�2i=4t and DR ¼ h½ΔθðtÞ�2i=2t, increase linearly
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withn at lown [Fig. 2(c)], similar to the translational diffusion
of spherical particles in dilute suspensions ofmicroswimmers
[10–18]. However, for n ≥ 10n0, where bacteria develop
collective swarming motions [Fig. 1(a)], the enhancement of
DT;R becomes nonlinear following a trend consistent with a
power-law scaling DT;R ∼ n2 [Fig. 2(c)].
The qualitative change of DT;RðnÞ scaling reflects the

underlying transition of bacterial suspensions from the
disordered to the swarming phase [24,25]. Generally, a
diffusion coefficient, DT;R ∼ l2, where l is the step size of
particle motion in a short time in the superdiffusive regime.
l is determined by the strength of the unbalanced fluid flow
created by numerous swimming bacteria at the location of
ellipsoids, which in turn is proportional to the fluctuation
of bacterial concentration surrounding the ellipsoids, δn.
Thus,DT;R ∼ l2 ∼ δn2. The linear scalingDT;R ∼ n at low n
indicates δn ∼

ffiffiffi
n

p
, consistent with the central limit theorem

[5]. In contrast, the nonlinear enhancement DT;R ∼ n2 at
high n indicates a giant number fluctuation δn ∼ n, which

is known as a hallmark of the swarming phase of active
fluids [5,7,33].
Next, we investigate the coupling between the transla-

tional and rotational motions of ellipsoids by measuring
a dimensionless cross-correlation function CðtÞ ¼
hΔxΔy sin 2θi=h½ΔxðtÞ�2i [Fig. 3(a)]. CðtÞ deviates from
zero, revealing a coupling between the two degrees of
freedom. More interestingly, CðtÞ shows a transition from
positive to negative correlations with increasing n. In sharp
contrast, the translation and rotation of a Brownian ellip-
soid are always positively coupled [34]. The translational
friction coefficient parallel to the major axis of an ellipsoid
ζ∥ is invariably smaller than that perpendicular to its major
axis ζ⊥—a generic feature of Stokes flow [35]. Thus, from
the Einstein relation, a Brownian ellipsoid diffuses faster
along its major axis with D∥=D⊥ > 1, where Di ¼ kBT=ζi
is the diffusion coefficient in the body frame of the particle
with i ¼ ∥ (parallel to the major axis) or ⊥ (perpendicular
to the major axis) and kBT the thermal energy. Hence,
an ellipsoid undertaking Brownian motion has a tendency
to diffuse along its major axis, resulting in a positive
translation-rotation coupling in the lab frame as shown
schematically by the blue ellipsoid in the inset of Fig. 3(b).
Note that when diffusing faster along its major axis, the
ellipsoid rotates counterclockwise, leading to a positive θ
and, therefore, hΔxΔy sin 2θi > 0. In contrast, the negative
coupling indicatesD∥=D⊥<1 [the red ellipsoid in Fig. 3(b)
inset], a counterintuitive result strictly prohibited in
Brownian diffusion. Thus, anisotropic particles in bacterial
suspensions possess an unusual mode of translation-
rotation coupling, nonexistent in equilibrium systems.
Motivated by the above analysis, we directly measure

anisotropic particle diffusions in a particles’ body frame.
We transform the trajectories of ellipsoids into the body
frame and obtain MSDs parallel and perpendicular to their
major axes [27]. The body-frame MSDs show the same
transition from the superdiffusive to the diffusive behav-
iors, allowing us to extractDi at long times. Consistent with
the analysis of the lab-frame correlations,D∥=D⊥ decreases

FIG. 2. Enhanced translational and rotational diffusions. (a) Translational mean-squared displacements (MSDT) and (b) rotational
mean-squared displacements (MSDR). The slopes of the lines are indicated. (c) Translational and rotational diffusion coefficients DT
andDR as a function of bacterial concentrations n. Solid lines indicate linear and nonlinear enhancements. The vertical line indicates the
onset of obvious bacterial swarming.

FIG. 1. Diffusion of an ellipsoid in quasi-two-dimensional
bacterial bath. (a) Velocity field of swarming bacteria around
an ellipsoid obtained from particle image velocimetry (PIV).
Scale bar: 20 μm. (b) Trajectory of an ellipsoid in a time interval
Δt ¼ 0.2 s. The trajectory is obtained from a custom algorithm
for particle tracking velocimetry (PTV). The center of mass of the
particle at different times xðtÞ is indicated by black dots. The
color indicates the orientation of the particle θðtÞ with respect
to the x axis fixed in the lab frame. Bacterial concentration
n ¼ 30n0.
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with n and enters into “the prohibited zone” of Brownian
diffusion at high n with D∥=D⊥ < 1 [Fig. 3(b)]. The link
between the coupling mode and the anisotropic body-frame
diffusion is further illustrated by the linear relation between
D∥=D⊥ and the extremum of CðtÞ, where the emergence
of negative CðtÞ coincides with D∥=D⊥ < 1 [Fig. 3(c)].
D∥=D⊥ shows a qualitatively similar trend for ellipsoids of
other aspect ratios, p (Fig. 4). But the variation of D∥=D⊥
with n reduces with decreasing p.
To understand the origin of the anomalous anisotropic

diffusions, we apply the Green-Kubo formula [36], where
Di is expressed as the integral of the velocity auto-
correlation, Di ¼

R
∞
0 dthviðtþ t0Þviðt0Þi, which is further

approximated as Di ≈ hv2i i
R
∞
0 dthniðtþ t0Þniðt0Þi. Here,

niðtÞ≡ viðtÞ=jviðtÞj is the direction of particle velocity vi
along the particle’s major (i ¼ ∥) or minor (i ¼ ⊥) axis at t.
Thus, Di is decomposed into two parts: (i) the average
particle velocity in the superdiffusive regime quantified
by MSDs in a short-time interval Δt, hv2i i ¼ hΔx2i i=Δt2;
and (ii) the autocorrelation of the velocity direction
AiðtÞ≡ hniðtþ t0Þniðt0Þi. AiðtÞ decays exponentially fol-
lowing AiðtÞ ¼ expð−t=τiÞ [27], where the correlation
time τi indicates the persistence of the motion. Hence,
Di ¼ hv2i iτi, leading to D∥=D⊥ ¼ðhΔx2∥i=hΔx2⊥iÞðτ∥=τ⊥Þ
[Fig. 3(b)]. At low n, while τ∥ and τ⊥ are comparable
[Fig. 5(b)], hΔx2∥i is consistently larger than hΔx2⊥i
[Fig. 5(a)], a feature similar to Brownian motion of aniso-
tropic particles [34,37]. However, as n increases,
hΔx2∥i=hΔx2⊥i approaches to a constant close to 1, whereas
τ⊥ grows larger than τ∥, resulting in the anomalous
D∥=D⊥ < 1. Thus, the anomalous coupling arises from
the more persistent motion of an anisotropic particle along
its minor axis.
To quantitatively interpret the anomalous diffusions from

a first-principles calculation, one needs to consider hydro-
dynamic interactions among a large number of swarming
bacteria, which is notoriously complicated and is still far

from well understood [2–4]. Such a theoretical investiga-
tion is out of the scope of our current experimental study.
Nevertheless, we find that the decreasing trend of τ∥=τ⊥
emerges even when only considering the far-field dipole
flow of a single bacterium (see the Supplemental Material
[27] for detailed discussions).
In short, we extend previous models on enhanced

diffusion of pointlike spherical particles [19–23] by assum-
ing pointlike particles with anisotropic shapes. The intrinsic
correlation between the translation and rotation of an
anisotropic point particle can be quantified using a scalar
S≡ ω · ðâ × v=jâ × vjÞ, where v and ω are the translational
and angular velocity of the particle in a dipole flow created
by a swimming bacterium [38], and â is the unit vector
along the major axis of the particle that forms an acute

FIG. 3. Translation-rotation coupling. (a) Cross correlations at different n. The dashed line indicates zero coupling. (b) The ratio of
diffusion coefficients along the major and minor axes in the body frame. Solid squares are from direct measurements and blue triangles
are the product of hΔx2∥i=hΔx2⊥i and τ∥=τ⊥ (see text). The solid line is an empirical relation for visual guide. Inset illustrates
schematically the distinct particle motions with positive (blue) and negative (red) translation-rotation couplings. (c) The extremum of
CðtÞ vs D∥=D⊥. The solid line is a linear fit. The “prohibited zone” of Brownian motion is indicated by the red areas in (b) and (c).

FIG. 4. D∥=D⊥ as a function of n for ellipsoids of different
aspect ratios, p. Inset shows the linear relation between
ð1 −D∥=D⊥Þ=ð1þD∥=D⊥Þ and ðp2−1Þ=ðp2þ1Þ, as predicted
by the hydrodynamic model [Eq. (2)], where D∥=D⊥ are taken
at n ¼ 40n0.
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angle with v [Figs. 5(c) and 5(d)]. We demonstrate that the
spatial average of S, hSi, is negative for the extensile dipole
flow of E. coli [27]. The negative sign indicates that the
particle rotates in a direction that aligns its minor axis with
the direction of its own translation, similar to the motion of
a particle in a straining flow [Fig. 5(c)], whereas the
magnitude jhSij gives the average speed of such a rotation.
Under the influence of random fluctuations in a bacterial
bath, this effective straining leads to [27]

τ∥
τ⊥

¼ 1þ 2hSitc=π
1 − 2hSitc=π

; ð1Þ

where the dimensionless quantity 2jhSijtc=π is the ratio
of the correlation time of random fluctuations [10] tc to
the characteristic time of the straining-induced rotation
ðπ=2Þ=jhSij. Equation (1) successfully predicts τ∥=τ⊥ < 1
for hSi < 0. Moreover, 2jhSijtc=π should be zero at n ¼ 0
and increase with n. Indeed, a linear approximation,
2jhSijtc=π ¼ cðn=n0Þ, quantitatively fits our experiments
with a numerical constant c ¼ 1.6 × 10−3 [Fig. 5(b)].
Although the assumption of our current analysis only
validates at low n, where the far-field dipole flow dominates
the bacteria-particle interaction, the quantitative agreement
between experiments and this linear approximation indi-
cates that at the coarse-grained level the swarming of a
group of bacteria may still be treated as an effective dipole,
albeit with a greatly enhanced dipolar strength. Last, the
simple hydrodynamic model also predicts that the strength
of the local straining decreases with the ellipsoids’ aspect
ratio p, and vanishes for spherical particles with p ¼ 1,
which, at high n, leads to a relation [27]

1 − ðτ∥=τ⊥Þ
1þ ðτ∥=τ⊥Þ

≈
1 − ðD∥=D⊥Þ
1þ ðD∥=D⊥Þ

∼
p2 − 1

p2 þ 1
; ð2Þ

consistent with our experiments (Fig. 4, inset).
A self-propelled microswimmer can be generally cat-

egorized as either a “pusher” or a “puller” depending on the

far-field flow it creates [2–4]. Our simple calculation
showed that the anomalous translation-rotation coupling
is a consequence of extensile dipole flows—a defining
feature of pushers. Thus, this coupling should be universal
for all pusher-type active fluids. In contrast, for puller
microswimmers such as Chlamydomonas reinhardtii, hSi
is positive [Fig. 5(d)] [27]. Therefore, an anisotropic
particle in puller-type active fluids should exhibit an
enhanced positive translation-rotation coupling. However,
due to the lack of the swarming behavior of pullers [2], the
effect is likely to be weak. Our preliminary experiments
with C. reinhardtii are consistent with this prediction.
In addition to providing a new insight into the intrinsic

properties of active fluids, our results also deepen the
understanding of transport processes in microbiological
systems [39]. We have demonstrated that the translation
and rotation of anisotropic particles—naturally the most
abundant particles in microbiological systems (e.g., dead
bacterial bodies and macromolecules secreted by bacteria)
—are not two decoupled degrees of freedom. Instead, the
rotation of an anisotropic particle profoundly influences
how it translates and thus fundamentally modifies its
transport dynamics.
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