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We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from
the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that
bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a
detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost
of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding
effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory,
implying a much faster nucleation. We also perform simulations of a continuum stochastic model of
membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the
membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and

opens new directions in the study of blebs.
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The adhesion between the cell membrane and the
cytoskeleton is crucial to many physiological processes,
including apoptosis [1], cell spreading [2], cytokinesis [3],
and motility [4]. The membrane is attached to the acto-
myosin cortex via a number of specific linker molecules
[5]. These linkers continuously bind and unbind, and they
are under stress due to both osmotic pressure and con-
tractile tension generated by myosin in the cortex.

Blebs are cellular protrusions that form when the cell
membrane locally unbinds from the underlying actomyosin
cortex. Once detached, the unbound membrane inflates due
to intracellular pressure, thus acquiring the shape of a
spherical cap. Typically, a new cortex starts to assemble
beneath the detached membrane and retracts the bleb, thus
healing the membrane to the cortex again [6]. Among many
other functions, membrane blebbing is often used for
motility by several cell types [7], mainly amoebae [8]
and invasive cancer cells [9]. Therefore, a physical under-
standing of blebbing will also provide insights into the
regulation of bleb-based motility [10].

Bleb formation can be triggered internally by actomyosin
contractile stresses or externally via micropipette aspiration
[11,12], laser ablation of the cortex [13], or osmotic shocks
[12]. These experimental studies show that a minimal stress
is needed to detach the membrane from the cortex. This
observation has been recently rationalized within a model of
membrane-cortex adhesion that incorporates both active
cortical tension and external suction [14]. However, the
spontaneous formation of blebs is a nucleation phenomenon
driven by local fluctuations, and hence a membrane detach-
ment of a minimum size is required.

Here, we propose that the determinant mechanism for
bleb nucleation is membrane peeling from the cortex,
whereby the membrane sequentially unbinds from adjacent
linkers, a phenomenon that has been observed in bleb
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formation [6]. This process is controlled by the linker
kinetics and completely determines the growth or decay of
a detached membrane patch, regardless of the energetic
cost. Within a simple model of force-dependent kinetics of
the linkers, we predict the bleb nucleation radius and the
effective energy barrier. Typically, the critical nucleation
size for membrane peeling is significantly smaller than the
one predicted by the classical nucleation theory, implying a
strong reduction of the nucleation time scales. Based on a
formulation of first-passage time statistics for the formation
of the critical nucleation patch, we study the kinetics of
bleb nucleation via numerical simulations.

Our study of bleb nucleation is based on the model for
membrane-cortex adhesion introduced in Ref. [14]. This
model considers a nearly flat membrane subject to a net
outward pressure f and attached to the underlying static
cortex by a density of bound molecular linkers p;,, smaller
than the density of available linkers p,. These linkers (such
as ezrin-radixin-moesin proteins) are modeled as springs of
elastic constant k that are fixed on the cortex and that attach
to the membrane at a constant rate &, and detach from it at
a force-dependent rate k.. Then, the coupled nonlinear
dynamics of the membrane position u#, which measures the
stretching of the bound linkers, and the density of links p,,
is given by

d
n%:f—phku, (13.)
d,
ZL = knlpo = p] = Kot (). (1b)

where 7 is an effective viscosity per unit length, and

koge (1) = kgffeﬂk“‘s’ (2)
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FIG. 1. Membrane peeling from the cortex. (a) Schematics of
the adhesion between the membrane and the cortex by springlike
molecular linkers (zigzag lines). The contact line at s, connects
the unbound membrane patch (left) to the adhered membrane
(right), forming a contact angle 6. (b) Normal force balance at the
contact line: Adhesion balances the vertical pulling of the
unbound membrane [Eq. (4)]. (¢) Geometry of the unbound
membrane patch, a spherical cap of radius R, =2y/f, and
detached radius r = R, sin 0.

with ¢ being a bond length in the nanometric scale [15] and
B = (kgT)~'. These equations predict a membrane-cortex
unbinding transition above a critical pressure f* given by
the solution to the implicit equation a*e!™® = y~!, with
a= f5p/po, and y = k2 /koy [14]. In terms of the density
of links, the unbinding occurs below a critical density
Py, =a‘py/z", with z* being the solution of z* =
a*(1+ ye).

We now ask whether a given unbound membrane patch
will grow to form a bleb or shrink. To this end, we consider
a detached region next to another where the membrane is
attached to the cortex [Fig. 1(a)]. With s the arc length
coordinate along the membrane, we define the contact
line as the set of points s.(#) having the critical density of
links; this is p,(s.. ) = pj. The speed of the contact line,
v, = ds./dt, is known as the peeling speed of the mem-
brane. Following Dembo et al. [16] and using Eq. (1b) (see
details in Ref. [17]), the stationary peeling speed is given by

_p, 0P
‘ 6s S=5.

= kon[po - Pzﬂ - koff(uc)pz’ (3)
where u,. = u(s,, t) is the stretching of the bound linkers at
the contact line. Then, the incipient bleb will grow by
peeling the membrane off the cortex if ». > 0 and will

shrink by healing the adhesion if ». < 0. Therefore, since
opy/ 8s|s:SC > 0 by definition [see Fig. 1(a)], peeling will
occur if the stretching of the bonds at the contact line, u,.,
exceeds the critical value u* = uyz*, with uy = kgT/(k$),
which solves Eq. (3) for v, = 0. It is important to stress that
this kinematic condition is independent of the energy gain
or loss associated to the motion of the contact line.

Next, without solving for the inner shape of the contact
region [18], we can establish the normal force balance
condition at the contact line. Neglecting bending rigidity,
the elastic force of the linkers, ku,, balances the vertical
pulling of the tension y produced by the unbound mem-
brane at a contact angle # [see Fig. 1(b)]:

2xrysin® = N ku,. 4)

Here, 2zr is the length of the (circular) contact line. This
contains N. = 2zrdp; bonds, with d being the diameter of
the effective area that a bond covers on the membrane,
presumably of a few tens of nanometers [see Fig. 1(a)].
In turn, the unbound membrane is inflated by the
intracellular pressure f to become a spherical cap of radius
R, =2y/f, as given by the Young-Laplace pressure drop
[19]. Then, the contact angle 0 is geometrically related to
the radius of the detached patch on the cortex, r, by sinf =
r/ Ry, [see Fig. 1(c)]. This implies that the vertical pulling of
the membrane at the contact line reads 277y sin = zr>f,
namely, the total force pushing on the unbound membrane,
thus closing a relationship between r and u,. in Eq. (4).
Thereby, the critical stretching for peeling, u*, translates
into a critical size of the detached membrane region r),:

» = 2d f7
where f* = pyku*. Thus, r, is a critical radius for
membrane peeling, and since the peeling process ends
up in a mature bleb, this quantity indeed becomes a critical
radius for bleb nucleation. Notably, r, is independent of
membrane tension y. Figure 2(a) plots r,, as a function of
the pressure f (red line), separating those detachments that
grow to form a bleb by peeling (green and blue regions)
from those that heal adhesion back (red region).
Remarkably, in contrast to classical nucleation, peeling
is not controlled by the energy cost of forming a given
nucleus but instead by the kinetics of membrane-cortex
linkers. This is apparent from the fact that the critical
pressure f* is only a function of the kinetic parameter y, so
that the critical radius in Eq. (5) is completely determined
by the kinetics of the linkers and the force f they withstand.
Indeed, the linkers at the contact line sustain the additional
pulling due to the unbound membrane. Consequently, they
may unbind even though the rest of the linkers remain
below the detachment threshold, thereby unchaining the
growth of the bleb. This effect was not captured by the
classical nucleation approach to bleb formation [2,6,21].

(5)

r
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FIG. 2. Bleb nucleation through membrane peeling. (a) Evolu-
tion of a detached membrane patch of radius r subject to a
pressure f. Membrane-cortex adhesion is healed for r < r, (red
region), and the membrane is peeled from the cortex for r > r,
(green and blue regions) [Eq. (5)]. Classical bleb nucleation
would occur only for r > r, (blue region). (b) Energy of
formation of a bleb of detached radius r [Eq. (6)] for some
values of the pressure f, including a typical equilibrium pressure
feq (solid lines). Membrane peeling may effectively strongly
reduce the nucleation energy barrier (dashed lines). Parameter
values are y = 5 x 107 N/m [13], d = 30 nm, k = 107 N/m
[14], 6 = 1 nm [15], py = 10'* m™2 [14], and y = 1073 [20].

To compare our prediction to classical nucleation theory,
we formulate the energy of bleb formation (see [17] for
details):

f? 4

E(r) ~ zr*w(f) — 16yr .

(6)
which is plotted in Fig. 2(b) for some values of the pressure
f. Note that this energy includes the kinetics of the linkers

via the pressure-dependent adhesion energy w(f) intro-
duced in Eq. (6) of Ref. [14]. Then, the maximum of the

energy E(r) indicates the classical nucleation radius
r, = \/8yw(f)/f*, which is also shown in Fig. 2(a) as

a function of the pressure (blue line). This figure shows that
membrane peeling may, for typical cellular parameters,
require substantially smaller nucleation radii than classical
energetic nucleation.

Finally, we stress that the classical mechanism is irrelevant
even if the classical nucleation radius r,, is smaller than r,,
since any radius r such that r, < r < r, would unavoidably
shrink, even going uphill in energy. Similarly, for r, < r,,
the growth of a bleb with r,, > r > r,, also goes uphill in the
energy landscape [see Fig. 2(b)]. Therefore, bleb growth is
not controlled by its global energy E(r) but by the local
dynamics of the contact line and, hence, by linker kinetics.
However, the probability of detaching a given patch by
means of a fluctuation is still determined by the energy
[Eq. (6)]. Hence, bleb nucleation through membrane peeling
entails overcoming an effective energy barrier E(r,), as
shown in Fig. 2(b) (dashed lines). This effective barrier may
typically be lower than the classical one [17], thus strongly
reducing the nucleation time.

In the following, we formulate and simulate a continuum
stochastic two-dimensional model of membrane-cortex
adhesion, which will give access to the statistics of bleb
nucleation times. The model describes the dynamics of
membrane undulations at a linear level by coupling
membrane elasticity and cytosol hydrodynamics to the
force-dependent kinetics of membrane-cortex ligands [14].
Here, we add thermal and chemical fluctuations to trigger
bleb nucleation. Hydrodynamic interactions render non-
local dynamics for membrane undulations 5u(x), which are
decomposed in Fourier modes:

~ 1 - f oo ~
5,6u6 = _Z [p;qkéu() +qu5pb6:| + C()(t),
b
 2kpTrl?

p S5(r—17), (7a)

- o S
0,80 = Ina [(Kq“ + 714> + py k)i +p—zq§pb,21 +¢5(1)s
S kT
(Ca(NC7(1) = 2’119—615&,_;],5(; —1), (7b)

where ¢ is the wave vector, 7, is the cytosol viscosity, k is
the membrane bending rigidity, 4 is the correlation length of
height fluctuations [14], and p,' is the equilibrium density
of bonds obtained from Egs. (1) and (2), with f = p} kute,.
The dynamics of the ¢ = 0 mode [Eq. (7a)] is decoupled
from the rest [Eq. (7b)] at the linear level. Equation (7b)
includes thermal fluctuations in the form of a white noise,
which is implemented in Fourier space [22]. In turn, the
kinetics of membrane-cortex linkers must include chemical
fluctuations via a multiplicative noise term within the It6
chemical Langevin equation approach [23], yielding
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FIG. 3. Statistics of bleb nucleation times. (a) Snapshot of membrane undulations u from simulations. (b) Probability distribution of
bleb nucleation times for two values of the pressure f. The long-time tails are fitted by an exponential P(f,,.) ~ e "mc. (c) The average
bleb nucleation time decreases with pressure on the membrane, and so does the characteristic time scale of the process, 1/v. Only
pressures very close to the unbinding transition at f* are explored because of computational time limitations. In addition to those in

Fig. 2, parameter values are k = 1071 J [19], ., = 1072 Pa-s [6], n = 50 Pa-s/um [14], k., = 10* s~! [20], L =2 pym, n = 1024,

and At = 1072k,,.

0:0p(X) = —p), Pkokoge’ " s25u(X) — [kon + kgre! "’1pp (X)

+ \/ kon[po — Pi] + i kO el + pRa kKO ePRuead 5u(X) + (KO ePhiead — ko 18p, (X)

with ([(1)[(¢)) = 8(t —7').

Simulations of Egs. (7) and (8) require two Fourier
transforms at each time step to couple the dynamics of
membrane undulations, which is evolved in Fourier space,
to the kinetics of the linkers, evolved in real space.
Therefore, our numerical procedure builds on the so-called
Fourier space Brownian dynamics method [24] for the
simulation of continuum models of membrane dynamics.
Simulations of a square membrane patch of side L =
nAr =2n/Ag with periodic boundary conditions are
performed. The membrane is initially fluctuating around
the equilibrium position and link density corresponding to
the chosen pressure f. A snapshot of the simulations is
shown in Fig. 3(a).

The simulation model is valid in the linear regime and
hence cannot capture the complete formation of the bleb.
However, it allows us to determine the statistics of bleb
nucleation, which reduces to the first-passage time statistics
of finding a detached patch larger than the critical size.
With this purpose, the following criterion is applied at each
time step and around each point in space for which
Pp(X,,1) <pj. A bleb of detached radius r is said to
nucleate at point x, at time ¢ if the average density of
links within a circle of radius r > r,, centered at X, falls
below the critical density for membrane-cortex unbinding,
{pp(X = Xy, 1)) i—z,]<r < Pp» while adhesion is restored
within a slightly larger circle, (p,(X = X,,))5-z, |<r+ar >
py. Therefore, circles of increasing radius around the
candidate points are considered until the nucleation criterion
is fulfilled. A minimal radius r,(f) is demanded according
to the critical nucleation radius in Eq. (5) [red line in

(1)
Vair

(8)

|
Fig. 2(a)]. This nucleation criterion is fundamentally differ-
ent from those in other simulation approaches to bleb
formation, which either imposed an arbitrary maximal
length of membrane-cortex linkers [25,26] or removed some
of them [27].

Employing our criterion, we have obtained the histogram
of bleb nucleation times at a given pressure f, as exemplified
in Fig. 3(b). We find that the probability distribution of bleb
nucleation times, P(t,,), features an exponential tail
~e Ve even for pressures very close to the unbinding
transition f*. This indicates that the process is dominated by
a single time scale 1/v o« ¢/£(») as usual in activation
processes. Finally, Fig. 3(c) plots the decrease of the average
nucleation time (f,,.) with increasing pressure. The char-
acteristic time 1/v obtained from the fits in Fig. 3(b) closely
approaches the average (f,,.), thus further stressing that it
strongly dominates the kinetics of bleb nucleation.

Our results on the distribution of nucleation times for
blebs (Fig. 3) are parallel to those reported for membrane
adhesion in Figs. 4 and 5 of Ref. [28]. In cells, linker
aggregation or cortical remodeling are usually required to
overcome the energy barrier associated to the nucleation of
adhesion domains in reasonable time scales [29]. In
contrast, due to the reduced energy barrier essentially
controlled by cortical tension [Fig. 2(b)], membrane peel-
ing could allow bleb nucleation to proceed without them.

In summary, we have shown that membrane peeling
governs bleb nucleation and can strongly enhance it. We
have predicted the critical radius for bleb nucleation
through membrane peeling, as well as its effective energy
barrier, typically lower than that of classical nucleation
theory. Our predictions can be experimentally tested by
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inducing local membrane-cortex detachments of controlled
size, for instance via laser ablation of the cortex [13] or
via optogenetic control of either myosin activity or density
of linkers. By means of simulations, we have also obtained
the distribution of bleb nucleation times as a function of
the stress on the membrane. These results could also be
assessed by measuring blebbing times in cells with per-
turbed cortical activity or subject to micropipette suction
[11-13].

Our model for peeling sheds light on the mechanisms of
homogeneous bleb nucleation, which may in general
coexist with heterogeneous nucleation at preferential sites
[26]. In future studies, our approach could be extended
beyond the nucleation stage to study bleb growth and
compare the results to experiments [6,13,30] and simu-
lations [25-27]. In addition, our simulation scheme could
be employed to pursue the role of membrane-cortex
adhesion on the statistics of membrane fluctuations [14,30].
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