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The complex interplay between the topography and the erosion and deposition phenomena is a key
feature to model granular flows such as landslides. Here, we investigated the instability that develops
during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation
of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing
angle of the confined flow on a dry heap appears to play an important role both in the final state of the
experiment, and for the shape of the structures. We show that the development of the instability is governed
by the inertia of the flow through the Froude number. We model this instability and predict growth rates that
are in agreement with the experiment results.
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Understanding sediment transport in nature is essential
to model landscape evolution, such as the transport
processes in rivers and their formation [1,2]. Patterns are
known to spontaneously develop at the bottom of the river
bed depending on the coupling between the flow and the
bed geometry through the erosion or transport laws [3,4].
Granular flows such as landslides can also alter the
underlying ground. However, contrary to the fluid case,
the erosion mechanisms are less clear when the granular
material is dense. Thus recent studies have focused
on the evolution of the interface between an erodible layer
and a granular flow [5–7], especially to model the entrain-
ment rates, the velocities, and the runout distances.
Understanding such processes can also give insights on
past and present climates for example [8–10]. Moreover,
although the instabilities of riverbeds have been extensively
characterized [11], the studies of instabilities in granular
flows were generally focused on the flowing layer, thus
describing avalanche fronts, roll waves, upward traveling
waves [12–15], providing a better understanding of granu-
lar flows. As a result, little attention has been paid to the
evolution of a granular bed under a solid mechanical load
[16,17]. Finally, while previous studies on the erosion rate
of a cohesive media by a granular flow focused on the
physical properties of the cohesive materials (liquid
bridges, tensile strength, elastic modulus) [7,18,19], the
coupling between the erosion mechanism and the interface
morphology with the granular flow is still an open question.
In this Letter, we explore the coupling between a flow of

dry granular material and a cohesive granular bed. Our
experiment exhibits an instability, as a train of steps appears
along the initially flat interface. Although this instability
shares similarities with the erosion of a dense cohesive bed
by fluid flow [3], we show that this system presents unique
features linked to the specific properties of granular matter.
Using a granular rheology and an erosion law, we can
model the phenomenon. The threshold and growth rates of

the initial instabilities are in good agreement with the
theory, providing insights into the erosion mechanism
itself.
We performed experiments in a quasi-two-dimensional

cell made of parallel vertical glass plates, whose gap width
W was set at 6 and 12 mm. The same polydisperse glass
beads of diameter 200–400 μm were used for both the
cohesive granular bed and the flow. The cohesive material
was obtained by mixing a small quantity of water with the
beads to obtain a low water content of 1% wt, which
corresponds to the formation of individual capillary bridges
[20]. This material was introduced and packed into the cell
to form a heap with a planar free surface of length ranging
from 30 to 35 cm. We injected the dry granular material at
the top left of the cell so a flowing layer would form above
the wet heap [Fig. 1(a)]. The two remaining parameters
are the initial inclination of the heap θi and the constant
injected flow rate Q. Both parameters influence the flow
properties, mainly the stresses at the interface τb and the
mean velocity u.
As shown by the time evolution of the heap in Fig. 1(a),

erosion occurs at the interface between the cohesive pile
and the granular flow, without deposition. Wet beads are
slowly extracted by the action of the dry flow. Thus, the
volume of the cohesive heap is gradually reduced during
the experiment until it reaches a steady state in which the
interface is flat and the dry granular material flows without
eroding the wet bed. During this erosion process, two
different interface morphologies can be observed. Either
the eroded interface remains initially flat and parallel to the
initial slope, or we observe the creation of step-shaped
structures for rather high inclinations and high flow rates.
These steps grow and propagate upstream, as shown in
Figs. 1(a) and 1(b), then disappear one after the other at the
top of the channel. Once they all have disappeared, the
erosion stops. In both cases, the final interface is flat and
forms an angle θf with the horizontal, with θf < θi.
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Figure 1(b) shows the evolution of the heap free surface
with time in an unstable case. The first minutes of the
development of the instability see the creation of many
structures of small sizes, rapidly merged by a coarsening-
like process. The surviving steps go through a growth phase
lasting roughly 30 min, until they reach a stable shape
(height and length): The back of the steps is not eroded, and
appears as straight parallel lines while the front propagates
upwards at a constant speed. We note that, close to the
entrance and exit of the channel, the steps are influenced
either by the injection point or by the accelerating flow. A
single experiment may produce steps with different sizes,
even once they are well established. However all the steps
display a similar steep front, and a flat back with a well-
defined slope. Figure 2(a) shows the shapes of four
different steps obtained for the same flow rate and different
initial slopes. The front is well fitted by a parabola, whereas
the back forms an angle θf with the horizontal, which is
equal to the final erosion angle. This means that the final
equilibrium state is quickly reached locally, i.e., at the back
of the steps. Moreover, the quantitative fitting of the

parabola corresponds to a free fall under the gravity with
an initial velocity of 22 cm · s−1 (solid red lines) which is
comparable to the mean velocity u of the flow on the final
slope (11.6 cm · s−1). This collapse of different step pro-
files also shows that the shape of the higher fronts are a
simple continuation of the smaller ones [Fig. 2(a)]. We
interpret this similar shape as a consequence of the take-off
of the granular flow occurring on the front of the steps. As
the grains are almost free-falling after this point, there is no
feedback from the lower part of the chute toward the upper
part of the front of the steps through the dilute flow. This
decoupling explains why the shape is kept, regardless of its
size. It is worth noting that the erosion mechanism above
the front by this dilute flow is likely different from the one
occurring under the dense flow in the linear parts of the
interface. This morphology and this propagation share
similarities with the head-cut [21] or step and pool
formation in riverbeds [3].
In the following, we focus on the final slope observed for

both types of erosion morphology in this system. First let us
comment on the stress evolution at the interface. For
experiments driven at a constant flow rate as these ones,
one easily shows that the shear stress increases when the
slope decreases using granular scaling laws (a result valid
along an inclined plane [22], in the presence of sidewall
friction [23,24] or captured by empirical laws close to the
flow threshold [25]). Moreover, recent experiments have
shown that the erosion of a wet granular surface results
from a stochastic phenomenon [7]. These remarks rule out
any intrinsic erosion threshold due to the wet pile.
Therefore we measured the final angle θf for different
flow rates, in channels of different widths, using stainless
steel and glass beads, while keeping the same erodible heap
(wet glass beads). Concurrently with each experiment, we
directly measured the flow slope in the very same con-
ditions, injecting the same flow rate in an initially empty
cell (without the wet pile). In this well-known granular-
flow geometry on a dry heap (called heap flow), the flowing
layer stabilizes over a static dry heap at a given angle
depending on the flow rate [23,24]. Figure 2(b) shows that
this heap-flow angle θeq is equal to the final erosion angle,
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FIG. 2. (a) Superimposition of steps from a given experiment
(black and blue dashed lines, solid green), and of a bigger step
(dotted black), built from a higher initial slope angle: 43.7°. The
shifted red lines are a fitting curve composed of a straight line of
slope 31° followed by a parabolic curve corresponding to a free
fall. (b) Angle of the heap at the end of the experiment θf, versus
the steady angle of flow of the same granular material down a dry
heap θeq. Different flow rates are used to modify θeq, and the
cohesive heap is made of glass beads.

FIG. 1. (a) Successive lateral views of a typical experiment. The shallow flowing granular layer appears brighter above the wet heap.
The first frame is the initial state, and the others are snapshots taken during the erosion. The black arrow follows one step. The flow rate
is 3.3 g=s and the initial inclination 35.8°. The width of one picture corresponds to 27 cm. (b) Successive profiles of the interface, from
dark blue to light red, every 15 min in the 6 mm channel, showing the steady propagation of steps over an initial slope angle of 39.4°.
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which proves that the erosion limit depends only on the
flow properties. If the interface angle became smaller than
the heap-flow angle, then a static dry layer would form
between the wet grains and the flow preventing any further
erosion process to occur. This criterion thus explains the
angle of the back of the steps. One last consequence of the
localization of the erosion on the step fronts is the reduction
of the average erosion rate up to a factor 2. At this stage, we
have no quantitative explanation for this factor (see
Supplemental Material [26]).
As already mentioned, the erosion of the cohesive heap

does not always lead to the generation of steps. We
explored under which conditions the interface remains flat.
Because of the analogy with the shape and the propagation
of the structures led by the pool and step instabilities in
riverbeds [3], we expect to observe an inertial destabiliza-
tion if the physical origin is identical. The underlying
mechanism would be the phase lag between the topography
and the local erosion rate due to inertia. Such a phase lag
exists for antidune or step-pool formations between the
transport coefficient or the erosion and the shape of the
interface [3,4,27]. We expect, therefore, a stability criterion
based on the Froude number Fr ¼ u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh cos θi

p
, which

compares the inertia with the gravity effects, where g cos θi
is the projection of the gravity perpendicular to the slope.
We first check the relevance of a critical Froude number by
plotting the different states observed in the two channels in
the Fr − θi diagram. As shown by the gray strip in the
Fig. 3(a), our measurements show a critical Froude number,
around 0.75, above which the instability develops. The
mechanism is thus the delay of the local erosion rate with
respect to the topography induced by the flow inertia.
Consequently, in the parameter space (θi, flow rate)

plotted in Fig. 3(b), we can now draw the limits of the stable
domain using iso-Fr lines. To compute the coordinates of

these lines, we use the now established rheology for such
dense dry granular flows μðIÞ [28], which links the internal
friction coefficient to the inertial number. More precisely,
assuming the flat interface to be rigid at the time scale of the
flow, we follow the approach proposed by Jop et al. [24] to
compute the vertical velocity profile: we integrate numeri-
cally the velocity profile of a steady 2D granular flow on a
rigid rough plane with a no-slip boundary condition, and
including friction at sidewalls [26]. After adjusting the
parameters of the model on other dry heap experiments, we
are able to draw the limits in the phase diagram [Fig. 3(b)].
The solid line corresponds to the equilibrium angle of the
flow over a dry heap. The dashed line is an iso-Froude
curve (Fr ¼ 0.87, see later) which delimits the stable
region.
To further understand the mechanism of the instability,

we model the flow using a Saint-Venant approach in a long-
wave approximation [29] (see Supplemental Material [26]),
because the flow is rather shallow in experiments
(h=W < 0.48) [24]. So we discard the lateral frictional
term in the equations for the sake of simplicity. In the
following, the influence of sidewalls will only be taken into
account in the shape of the vertical velocity profile in the
basic state. The reference framework is the flat initial
interface [the x − z axes in Fig. 1(a)] eroded at constant rate
hdη=dti ¼ −E0, which represents the normal velocity of
the mean interface. The evolution of the thickness h, the
elevation of the interface η, and the mean velocity u are then
described by three equations: the mass conservation inside
the flow of constant mass density ρ and the momentum
equation, both integrated over the depth z, and the erosion
law. We verified the scale separation between the character-
istic times of the slow erosion process (few cm=hr) and of
the flow (10 cm=s). The time scale of the evolution
of the system is thus imposed by the erosion rate E0.

FIG. 3. (a) Evolution of the interface with the initial Fr. The symbols depict the evolution of the interface. The borders of the gray strip
are 0.7 and 0.8. (b) (θi-flow rate) phase diagram in the 12 mm-wide channel. The solid line is the heap flow angle θeq, under which
erosion is not possible. The dashed line is the curve Fr ¼ 0.87. (c) Dimensionless growth rates of the most unstable mode as a function
of the Froude number in experiments for glass beads in the 6 mm channels (filled circle) and 12 mm channel (open circle) and steel
beads in 12 mm channel (diamond). The curves correspond to a prediction of the theoretical growth rate [Eq. (2)] for the most unstable
mode ~k ¼ ∞ (dashed line) and for a wave number in agreement with the experiment h0k ¼ 0.1 (solid line) at an inclination of θi ¼ 30°.
Inset: Direct comparison of growth rates using the measured wave numbers ~k as a parameter.
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This quasistatic evolution allows us to neglect first the mass
flux into the flow due to erosion compared to mass flux of
the flow and second the inertial-time-derivative term which
scales as the ratio of these fluxes in the momentum equation
below:

ρ
∂hu
∂t þρ

∂αhu2
∂x ¼ρghcosθ

�
tanθ−μbðu;hÞ−

∂h
∂x

�
; ð1Þ

where α takes into account the vertical velocity profile (e.g.,
5=4 for a Bagnold velocity profile or 4=3 for a linear
velocity profile as in our case). The left terms are the inertia,
and in the right-hand side, from left to right, the terms are
the weight of the layer, the basal friction, and the derivative
of the hydrostatic pressure. The basal friction is modeled by
the μðIÞ rheology [12,28]. Following our recent results on
granular erosion [7], the erosion rate ð∂η=∂tÞ is propor-
tional to −ðFcap=FÞ exp½−ðFcap=FÞ�, where Fcap is the
capillary force responsible for the cohesion and F is the
mean force acting on grains. We used forces instead of
stresses because the model was developed at the grain
scale. In addition, we focus here only on the physical
mechanism of the instability not on the influence of the
cohesion on erosion [7]. As shown by the Figs. 3(a) and
3(b), the erosion instability is linked to the inertia of the
flowing grains, so F must depend on their inertia. A recent
numerical study [19] proposes that the average force of
impacting grains is linked to their kinetic energy. We thus
assume that F is proportional to ðρu2Þβ=2 with β ¼ 1.2, as it
is the case at the grain level [19]. The parameters are made
dimensionless using the steady state erosion rate of the flat
interface E0, the thickness h0, the flow rate per unit width
q0, and the mean force F0: ~h ¼ h=h0, ~x ¼ x=h0, ~η ¼ η=h0,
~u ¼ uh0=q0, ~t ¼ tE0=h0. We look for the evolution of
a small perturbation of the initial steady state on a flat
interface of slope θi using the linearized equations and
decomposing the flow into normal modes∝exp−ið~k ~xþ ~ω~tÞ.
We thus find the growth rate

~σ ¼ ℑð ~ωÞ ¼ c
~k2ðαFr2 − 1Þ

ða − bÞ2 þ ~k2ðαFr2 − 1Þ2 ; ð2Þ

where a and b are ∂μb=∂u and ∂μb=∂h [12,26], and
c ¼ βðFcap=F0 − 1Þ. A critical Froude number is found
above which the interface is unstable: Frc ¼ α−1=2 ¼ 0.87
for α ¼ 4=3. We use this value to plot the iso-Froude curve
in Fig. 3(b) showing a good agreement with the exper-
imental results. Moreover, we can compare the predicted
initial growth rate to the experimental ones, measuring
the height of the steps in the early exponential regime.
Figure 3(c) shows the measured growth rates of the initial
steps rising from the flat interface for different experi-
ments. The most unstable mode is obtained with ~k ¼ ∞
whose growth rate diverges at the threshold (dashed line).

However, the model predictions for kh0 ¼ 0.1 and
θi ¼ 30° are in good agreement with the experimental data
considering the error bars, noting that the experimental ~k is
not strictly constant but close to 0.1. The inset of Fig. 3(c)
shows the comparison when using the experimental ~k. We
checked that choosing a different shape factor α for the
steady-state velocity profile does not qualitatively change
the graph. Our study indicates that inertia drives this
instability. Whenever the granular flow is supercritical
(Fr > Frc), the interface does not remain flat. This result
is important to correctly model the evolution of the interface:
if the mean erosion force acting on the interface was linked
to the weight of the layer or to the shear stress, the instability
would not be predicted. Our findings strongly support the
role of the impact of individual grains [19] in granular
erosion mechanisms.
In conclusion, we have studied a new erosion instability

occurring with granular flows over a cohesive granular bed.
Above a critical Froude number, the interface is unstable
and the shape of the steps is governed by the properties of
the granular flows. We model, with success, the mecha-
nisms in the framework of a Saint-Venant approach,
extending the relevance of the depth-averaged methods
to model complex evolutions of granular flows [29,30].
However, this model cannot predict any selection of a finite
wavelength, an additional longitudinal dissipation term in
the momentum equation may be able to reduce the growth
rate of too short wavelengths [29,30]. We finally identify
that the inertia of grains governs the erosion mechanisms in
dense granular flows. This result has implications for rivers
with strong flow rate, associated with a large transport of
sediment, or for debris flows. A precise knowledge of the
bedload and the grain velocity is required for a good
prediction of the erosion rate. Therefore our results call for
experimental data on internal structure and grain-impact
velocities inside such flows. Our findings can now drive the
development of an erosion model for geophysical granular
flows. It also urges us to take into account an accurate
granular rheology for modeling the flow since tuning the
rheological coefficients for a granular collapse may repro-
duce the final deposit but not the dynamic and the time
evolution [31]. Further work is also required to model the
dilute erosion mechanisms in the fully developed state that
will occur in nature on even stepper slopes. We believe
that our results could lead to a better understanding of
geophysical flows.
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