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The t-J Hamiltonian is one of the cornerstones in the theoretical study of strongly correlated copper-
oxide based materials. Using the density-matrix renormalization group method we obtain the phase
diagram of the one-dimensional t-J chain in the presence of a periodic hopping modulation, as a prototype
of coupled-segment models. While in the uniform 1D t-J model the near half-filling superconducting state
dominates only at unphysically large values of the exchange coupling constant J=t > 3; we show that a
small hopping and exchange modulation very strongly reduces the critical coupling to be as low as
J=t ∼ 1=3—well within the physical regime. The phase diagram as a function of the electron filling also
exhibits metallic, insulating line phases and regions of phase separation. We suggest that a superconducting
state is easily stabilized if t-J segments creating local spin-singlet pairing are coupled to each other—
another example is the ladder system.
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Introduction.—Since its introduction at the end of the
1980s, the t-J model Hamiltonian [1] has formed one of the
cornerstones in the theoretical study of high temperature
superconductors (HTSs). It is a minimal low-energy model
for the electronic and magnetic structures of the copper-
oxide planes in HTSs and can be derived from the Hubbard
model in the strong coupling limit [2]. Although the initial
interest in the t-J model focused on its two-dimensional
(2D) realization, its one-dimensional (1D) version, which is
of direct relevance to, for instance, doped spin-chain
materials, provides a number of interesting phases that
are also observed in the 2D context, such as a spin-gap
phase and the occurrence of phase separation [3,4]. The 1D
t-J model actually also displays a superconducting insta-
bility, even if all this is in a parameter range where the ratio
of the exchange J and hopping t, near half filling is J=t ∼ 3,
which is not of relevance to real materials—the HTSs are
rather in the regime where J=t ∼ 1=3. In the latter regime,
quasi-1D systems, e.g., t-J ladders can support super-
conductivity [5–9] which is related to the substantial
binding energy for two holes in even-leg ladders, giving
rise to the presence of preformed Cooper pairs on the rungs.
However, in a 1D system this binding energy vanishes for
physically relevant values of J=t [10].
In this Letter, we consider the 1D t-J model in the

presence of a periodic local modulation of t and J; within
segments of length Sl the hopping and exchange are
constant, but the coupling between these segments is
somewhat weaker, see Fig. 1. In a solid, such a local
modulation might, for instance, result from a periodic
structural modification or from electronic self-organization.
Using the density-matrix renormalization group (DMRG)
method we establish that for hole-doped systems close to
half filling in the presence of a weak modulation not only

the spin gap forms but also the holes pair up already for
small values of J=t. A calculation of the Luttinger param-
eter suggests the stabilization of a superconducting (SC)
state in a wide region of the phase diagram, also in the
physically relevant low-doping regime with J=t ∼ 1=3. The
stability of the SC state weakly depends on the segment
length and apart from superconductivity also metallic,
insulating, and phase separated regions are present.
Model and method.—To investigate the effect of the

modulation, we consider the model Hamiltonian H ¼
H0 þHδ, where H0 is the uniform 1D t-J part H0 ¼
−t
P

iσðc†i;σciþ1;σ þ H:c:Þ þ J
P

iðSi · Siþ1 − 1
4
niniþ1Þ, and

Hδ describes the local modulation

Hδ ¼ δt
X

jσ

ðc†jSl;σcjSlþ1;σ þ H:c:Þ

− δJ
X

j

�

SjSl · SjSlþ1 −
njSlnjSlþ1

4

�

: ð1Þ

Here, the sum is over all integers i (j) labeling the sites
(segments), c†iσ is the electron creation operator at site iwith
spin σ, Si is the spin-

1
2
operator, and ni the electron number

operator. Equation (1) represents the reduction in hopping
integral δt and exchange interaction δJ on the bonds
connecting edge sites of segments with length Sl. The

FIG. 1. Schematic picture of the model for coupled t-J
segments.
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modulated bond consists of the rightmost site of jth
segment and the next site to it, which are indexed by
jSl and ðjSl þ 1Þ, respectively, see Fig. 1. To stay within
the perturbative framework in which the t-J model is
derived from the Hubbard Hamiltonian, we retain the
direct relation between δt and δJ from second-order
perturbation theory. As J ¼ 4t2=U, where U is the on-site
Coulomb repulsion, we have

J − δJ
J

¼
�
t − δt
t

�
2

: ð2Þ

In units of t, we are thus left with only two energy scales:
δt=t and J=t. The parameter δJ=J is fixed by the relation in
Eq. (2). Clearly, for δt ¼ 0 the model reduces to the usual
1D t-J Hamiltonian. The electron density is denoted by n.
This model also gives a fascinating playground from the
points of view of the SC state as a doped spin liquid [11]
and of the SC state laying near charge ordering [12].
The quantities of interest, e.g., Luttinger parameter, spin

gap, and binding energy, were calculated by the DMRG
method [13,14] on a lattice with up to L ¼ 288 sites and
finite-size extrapolations were performed to obtain them in
the thermodynamic limit [15]. We have studied the systems
with segment lengths Sl ¼ 2, 4, 6, 8, 12. The electron
filling is defined as n ¼ N=L, where N is the total number
of electrons. We kept up to 2000 density-matrix basis states
and the typical discarded weight is ∼10−8t.
Spin gap and pair binding.—We start our discussion

with spin gap Δs. The uniform t-J model (i.e., δt ¼ 0) in
1D gives the spin-gap phase only at low electron density
and at large exchange J=t > 2 [3,4,16,17]—a parameter
regime that is barely relevant to real materials. We show
below that the spin-gap phase can appear at small J=t and
for weak hole doping (i.e., n ≈ 1) when a nonzero δt is
introduced.
The singlet-triplet excitation energy is given by the

energy difference Δs ¼ EðN; STz ¼ 1Þ − EðN; STz ¼ 0Þ.
Here, EðN; STz Þ is the ground state energy with N electrons
and total z component of spins STz . At half filling, n ¼ 1, the
uniform t-J model corresponds to a Mott insulator with
zero spin gap. But if δt is switched on, the spin gap opens
and increases monotonically, see Fig. 2(a). The gap reaches
its maximum in the limit of decoupled Heisenberg
segments, i.e., δt=t ¼ 1. However, the situation changes
drastically when the system is doped with holes, see
Figs. 2(b) and 2(c). The overall spin gap is much reduced
but kept to be finite. The gap reaches its maximum for small
δt=t and gradually vanishes for larger values of δt=t.
Figure 2(b) shows the spin gap at J=t ¼ 0.8 for Sl ¼ 2,
4, and 6 as a function of δt=t in the limiting density n → 1,
which corresponds to putting only two holes in different-
length systems and extrapolating Δs to the thermodynamic
limit [15].

Surprisingly, a very small δt ¼ 0.01 is already enough to
produce a sizable spin gap. The spin gap increases first as in
the half-filled case, but then decreases to zero for larger
δt=t. It is interesting that the maximum of the spin gap is
not really sensitive to Sl. We notice that the occurrence of
the maximum ofΔs shifts to higher δt if we increase Sl. It is
related to a slower reduction of (electron or hole) band-
width by δt for larger Sl. We also calculated the pair binding
energy, which measures the stability of pairing and is
defined as Δb ¼ EðN � 2; STz ¼ 0Þ þ EðN; STz ¼ 0Þ−
2EðN � 1; STz ¼ �1=2Þ. The plot of Δb is shown in
Fig. 2(b) for Sl ¼ 2, 4, and 6 with the same symbols
and colors as Δs but connected by dotted lines. The
negative values of Δb indicate the stability of pairing
and a relation Δs ¼ jΔbj in a metallic (M) regime suggests
an occurrence of the spin-singlet SC state. The spin gap and
pair binding energy at a finite hole density of n ¼ 23=24
are shown in Fig. 2(c). Compared to the limit of half filling
n → 1, their magnitudes are smaller but the overall behav-
iors are almost unchanged.
Superconductivity and phase diagram.—The DMRG

calculations allow us to map out the phase diagram for
the modulated 1D t-J model including the potential SC
state. It should be noted that the uniform 1D t-J model
shows a transition from M to the SC state at J=t ≥ 2 in the
dilute electron regime. An even higher J=t is necessary to
get the SC phase with increasing n [4]. In order to examine
the possibility of superconductivity, we estimate the M-SC
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FIG. 2. Spin gap and binding energy at J=t ¼ 0.8 for (a) n ¼ 1,
(b) n → 1, and (c) n ¼ 23=24. The red empty circles, green filled
circles, and blue star points connected with solid (dotted) lines
represent the spin gap (binding energy) for segment size Sl ¼ 2,
4, and 6, respectively.
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transition point by calculating the Luttinger parameter Kρ:
In the conformal field theory the SC and density-density
correlations are known to decay in power law as ∼1=x1=2Kρ

and ∼1=x2Kρ at large distances x, respectively. Therefore,
we can find the dominant correlations, namely, a para-
magnetic metal for Kρ < 1 and a superconductor for
Kρ > 1 [18,19]. The Luttinger parameter is extracted from
the slope of the charge structure factor CðqÞ at the wave
vector q → 0 limit [20–22]:

Kρ ¼ π lim
q→0þ

CðqÞ
q

; ð3Þ

where q ¼ 2πSl=L for finite systems and CðqÞ is
the Fourier transform of density-density correlation
CðqÞ ¼ ð1=LÞPL

l¼1ðhNiNiþli − hNiihNiþliÞ, where Ni ¼P
j∈Slnj is the total density of the ith segment. Equation (3)

is still valid for a modulated system [23]. More details are
discussed in the Supplemental Material [15].
For fixed n, Sl, and δt, we determined theM-SC transition

point Jc=t (the value of J=t at which Kρ ¼ 1). At large J=t,
the system separates into electron- and hole-rich regions
and the onset of phase separation (PS) has been estimated
by inverse compressibility or as a divergent point ofKρ [15].
The resulting n-J=t phase diagrams containing PS, M, and
SC phases are shown in Figs. 3(a)–3(c) for δt=t ¼ 0.2 and
Sl ¼ 2, 4, and 6, respectively. The blue star symbol
represents Jc=t in the n → 1 limit. It is remarkable that
close to half filling (even for a system with only two holes,
i.e., n → 1) Jc=t is significantly reduced for all the cases of
Sl as shown in Fig. 3. Apparently, the critical value can be as
small as Jc=t ∼ 0.35 for a relatively weak modulation
δt=t ¼ 0.2. It has been also confirmed by comparing the
decay ratios of the density-density and SC correlation
functions with the distance [15]. This significant reduction
ofKρ would be related to a wide region of the SC phase near
half filling in the t-J ladder model [9].
This observation motivates us to study how Jc=t changes

as a function of δt=t. Since a large reduction of Jc=t can be
acquired near half filling, we fix the filling at n ¼ 23=24

and plot Jc=t in Fig. 4 for Sl ¼ 2, 4, 6, 8, 12. For each Sl
even a weak modulation δt=t causes a large drop in Jc=t
from∼3.2 for the uniform case δt ¼ 0. Depending on Sl the
lowest Jc=t is reached for δt=t between ∼0.1 and ∼0.3.
This implies that an increase of δt helps electrons in each
segment to form singlet pairs which can move easily unless
δt=t becomes too large, which then tends to localize
electrons on individual segments for large δt=t. This
explains the steep minimum and then slow rise in Jc=t.
At small δt=t, Jc=t increases with Sl because the pair
formation gets weakened as the segment becomes larger.
Ultimately, at very large Sl, the system approaches to the
uniform t-J model. On the other hand, at large δt=t the pair
formation is most effective but the movement of pairs is
restricted due to the narrowing of bandwidth and a high
Jc=t is given accordingly. An intriguing thing is that even
for Sl ¼ 12 the strong reduction of Jc=t is obtained despite
Jc=t ∼ 3.2 for any δt=t in the Sl → ∞ limit. It means that a
system with Sl ¼ 12 is still far from the uniform t-J model.
We also notice that as we increase Sl ¼ 2 to 12 Jc=t at large
δt=t decreases rapidly for smaller Slð≲4Þ and then almost
saturates for larger Slð≳6Þ. To explain this behavior, we
plot the spin gap of decoupled segments (i.e., δt=t ¼ 1) as a
function of Sl in the inset of Fig. 4. As expected, we see a
sharp (slow) decrease of the spin gap at small (large) Sl.
Insulating line phases.—Unlike the uniform t-J model,

we notice some insulating regions (vertical lines in Fig. 3)
appearing at various commensurate fillings. This type of
insulating region is well known in ladder systems [24].
Because of the restriction in hopping as we introduce δt, the
electrons may form a superstructure in each segment which
leads to the insulating behavior of the system. The
insulating to M transition of the Sl ¼ 2 system at
n ¼ 1=2, which is shown in Fig. 3(a), has been discussed
in terms of the melting of Mott insulating states [25]. We
briefly recap its intuitive understanding which will guide us
to understand the insulating regions at other fillings and
Sl ¼ 4, 6 systems.
Let us first consider the Sl ¼ 2 system with no exchange

interaction, i.e., J → 0. Then the tight binding model with
δt > 0 at n ¼ 1=2 forms bonding and antibonding states
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FIG. 3. (a)–(c) Phase diagrams on n-J=t plane at δt=t ¼ 0.2 for Sl ¼ 2, 4, and 6 systems, respectively, containing superconducting
(SC), metallic (M), and phase separated (PS) phases. The empty circles represent the M to SC transition and the blue star indicates the
M-SC critical point in the n → 1 limit. The vertical lines at commensurate fillings represent insulating line phases.

PRL 116, 067002 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 FEBRUARY 2016

067002-3



with spin σ, i.e., t-dimer states: jt- dimiσ ¼ ðjσ0i �
j0σiÞ= ffiffiffi

2
p

separated by a dimerization gap Δd ¼ 2δt at
each segment. Thus, due to the t dimerization one electron
is trapped in the bonding state of a segment and the system
becomes a Mott insulator. Then, if we increase J, a
tendency to make singlet pairs is introduced at each
segment due to J dimerization, which leads to a transition
to theM state. If we further increase J, the system goes into
SC and finally reaches to PS. Such a melting of insulating
states happens also in the Sl ¼ 4 system at n ¼ 1=4, 3=4
and the Sl ¼ 6 system at n ¼ 1=6, 3=6, 5=6 as shown
in Figs. 3(b) and 3(c), respectively. No effective pairing
with an odd number of electrons in a segment at these
fillings causes the melting of insulating states with increas-
ing J. However, an even number of electrons on a
segment as in the Sl ¼ 4 system at n ¼ 1=2 and the Sl ¼
6 system at n ¼ 2=6, 4=6 prevents melting by making an
effective pairing between themselves even with increasing
J. As a result, the insulating states continue to exist
until the PS boundary as shown in Figs. 3(b) and 3(c).
These insulating line phases and metal-insulator transitions
were captured by calculating charge gap Δc ¼ ½EðNþ
2; 0Þ þ EðN − 2; 0Þ − 2EðN; 0Þ�=2.
Conclusions.—Using the DMRG method we confirmed

that a metal to superconducting transition can occur in a
physically relevant regime of exchange and hopping
parameters (i.e., J=t ∼ 1=3) in the 1D system with coupled
t-J segments. As compared to the uniform 1D t-J model,
only a moderate modulation of the hopping integral causes
an order of magnitude reduction of critical exchange
coupling to the superconducting state near half filling.
We presented n-J phase diagrams at δt=t ¼ 0.2 with
different segment sizes containing, besides phase separa-
tion, metallic and superconducting phases also insulating
line phases at commensurate fillings. These results may be
of relevance to certain quasi-1D materials, including

cuprates in which typical exchange coupling is J=t ∼
1=3 [26]. An example is the spin-Peierls system
CuGeO3 [27] which consists of linear spin-1

2
CuO2 chains

with alternating exchange and hopping, corresponding to a
Sl ¼ 2. Our results may suggest that doping with a few
holes may turn the system to be superconducting. Such
values of exchange and hopping parameters can in principle
also be achieved in 1D ultracold fermionic quantum gases
[28] and with polar molecules [29] on optical lattices. It will
be most interesting to establish whether in such quantum
simulator experiments a superconducting state can be
stabilized by a relatively benign modulation of the 1D
t-J Hamiltonian as we propose here. In this Letter, the
segments are an open chain coupled linearly as a simplest
1D case. However, any shape of segment can be allowed if
it creates a locally finite spin excitation gap. The network
between the segments would also be flexible. We think that
this simple condition possibly will be a great help for
superconducting material design. For example, the ladder
t-J system is a special case of the coupled-segment
systems.
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