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When a droplet containing a nonvolatile component is dried on a substrate, it leaves a ringlike deposit
on the substrate. We propose a theory that predicts the deposit distribution based on a model of fluid flow
and the contact line motion of the droplet. It is shown that the deposition pattern changes continuously from
a coffee ring to volcanolike and to mountainlike depending on the mobility of the contact line and the
evaporation rate. An analytical expression is given for the peak position of the distribution of the deposit
left on the substrate.
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The drying of particle suspensions and polymer solu-
tions gives rise to surprisingly rich deposition patterns
[1,2]. The most well known one is the coffee-ring pattern of
colloidal suspensions [Fig. 1(a)], where all particles in the
droplet are swept to the edge of the droplet. This happens
when the contact line is pinned [3,4]. Mountainlike
deposits [Fig. 1(b)], which have peaks at the droplet center,
have also been reported when the contact line is receding
[5–7]. Multiring patterns have been observed when contact
lines show stick-slip motion [8–10], and volcanolike
patterns [Fig. 1(c)] have also been reported in the drying
of polymer solutions [11,12].
Theoretical models have been developed for the drying

phenomena of volatile droplets. Previously, most works
were limited to the case of a “pinned” contact line. Deegan
et al. [13] first analyzed the flow induced in a liquid droplet
by evaporation and explained the physical origin of the
coffee ring. Hu and Larson [14,15] carefully compared the
results of flow simulation with experiments and pointed out
that the Marangoni effect is important. Such works have
further been extended to calculate the profile of the deposit
left on the substrate [16–18].
Comparedwith the case of a pinned contact line,much less

work has been done for the case of a moving contact line.
Frastia et al. [19] have conducted a simulation assuming a
concentration dependent viscosity, and have shown that
multiring deposition patterns are obtained. Freed-Brown
[20] made a simple theory assuming that the contact line
can move freely to keep the contact angle at the equilibrium
value, and explained the mountainlike deposition pattern.
More recently, Kaplan et al. [21] proposed a model to
interpret the transition of the deposition pattern fromuniform
films to single rings. All these theories use different models
for the motion of the contact line, and our understanding for
the deposition pattern in droplets having a moving contact
line is still at a primitive stage.
In this Letter, we shall propose a simple model for the

drying droplet with a moving contact line, and discuss the

change of the deposition pattern (ring to mountain) when
the mobility of the contact line and evaporation rate are
changed.
We consider a liquid droplet placed on a substrate. Let

RðtÞ be the radius of the base circle of the droplet, andHðtÞ
be the height at the center. We assume that the contact angle
is small [RðtÞ ≫ HðtÞ] and therefore the height profile of
the droplet hðr; tÞ at time t is given by a parabolic function

hðr; tÞ ¼ HðtÞ
�
1 −

r2

R2ðtÞ
�
: ð1Þ

The contact angle is given by θðtÞ ¼ 2HðtÞ=RðtÞ, and the
droplet volume VðtÞ is

VðtÞ ¼ π

2
HðtÞR2ðtÞ: ð2Þ

The volume VðtÞ of the droplet decreases in time due to
solvent evaporation. The evaporation rate of a droplet is

FIG. 1. Schematic of a droplet and three different deposition
patterns with axisymmetry in a cylindrical coordinate system
(side view). Relevant parameters are the radius of the contact line
RðtÞ, the height of the droplet at the centerHðtÞ, the contact angle
θðtÞ, and the profile of liquid-vapor interface hðr; tÞ.
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determined by the diffusion of solvent molecules in the gas
phase, and can be analyzed theoretically. It has been shown
that _VðtÞ is proportional to the base radius of the droplet
[16,17], and is weakly dependent on the contact angle θ.
Here, we ignore the contact angle dependence, and write
_VðtÞ as

_VðtÞ ¼ _V0

RðtÞ
R0

; ð3Þ

where _V0 (< 0) and R0 denote the initial values of _VðtÞ and
RðtÞ, respectively. _V0 is expressed in terms of the diffusion
constant of the solvent molecules in the gas phase, the
solvent vapor pressure near and far from the droplet, and
the initial shape of the droplet.
Given the equation for _VðtÞ, we need one more

equation for _RðtÞ. To determine this, we use the Onsager
principle [22–25]. In the current problem, this principle is
equivalent to the minimum energy dissipation principle in
Stokesian hydrodynamics, which states that the evolution
of the system is determined by the minimum of the
Rayleighian defined by

ℜ ¼ Φþ _F; ð4Þ
where _F is the time derivative of the free energy of the
system, and Φ is the energy dissipation function.
The free energy F is easily obtained. The droplet size is

assumed to be less than the capillary length, then the free
energy F is written as a sum of the interfacial energy

F ¼ ðγLS − γSVÞπR2 þ γLV

Z
R

0

dr2πr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0ðrÞ2

q

¼ ðγLS − γSV þ γLVÞπR2 þ γLVπH2; ð5Þ
where γLV , γLS, and γSV , are the interfacial energy density at
the liquid-vapor, liquid-substrate, and substrate-vapor inter-
faces, respectively. Using the equilibrium contact angle
θe ¼ ½2ðγLV þ γLS − γSVÞ=γLV �1=2, and the volume V of the
droplet, Eq. (5) is written as

F ¼ γLV

�
4V2

πR4
þ πR2θ2e

2

�
: ð6Þ

Then, the time derivative of such a free energy is easily
obtained as

_F ¼ γLV

��
−
16V2

πR5
þ πθ2eR

�
_Rþ 8V _V

πR4

�
: ð7Þ

To calculate the energy dissipation function Φ, we use
the lubrication approximation. Let vðr; tÞ be the height-
averaged fluid velocity at position r and time t. The energy
dissipation function Φ is written as

Φ ¼ 1

2

Z
R

0

dr2πr
3η

h
v2 þ πξclR _R2: ð8Þ

The first term represents the usual hydrodynamic energy
dissipation (η being the viscosity of the fluid) in the
lubrication approximation, while the second term repre-
sents the extra energy dissipation associated with the
contact line motion over the substrate. Here, ξcl is a
phenomenological parameter representing the mobility of
the contact line: ξcl is infinitely large for a pinned contact
line, and is zero for a freely moving contact line.
Experiments [6,11] showed that ξcl originates from the
substrate wetting properties, substrate defects, and surface-
active solutes. The first two factors affect the hydrodynamic
dissipation at the contact line, while the third one affects
the surface tension between the liquid and vapor and the
liquid and substrate on the molecular scale, resulting in a
different receding contact angle, and then it further changes
the mobility of the contact line [26].
The velocity vðr; tÞ in Eq. (8) is obtained from the

solvent mass conservation equation

d
dt

Z
r

0

dr02πr0hðr0; tÞ ¼ −2πrvðr; tÞhðr; tÞ

−
Z

r

0

dr02πr0Jðr0; tÞ; ð9Þ

where Jðr; tÞ denotes the evaporation rate (the volume of
solvent evaporating per unit time per unit surface area) at
position r and time t. It is known that Jðr; tÞ diverges at the
contact line in such a way that Jðr; tÞ ∝ ½RðtÞ − r�−1

2 [3].
However, since this spatial dependence of Jðr; tÞ has a
weaker effect compared with the effect of contact line
pinning, here we proceed by assuming that Jðr; tÞ is
independent of r and has the form

JðtÞ ¼ −
_VðtÞ

πR2ðtÞ ¼ −
_V0

πR0RðtÞ
: ð10Þ

Equations (1), (9), and (10) give the following simple
expression for vðr; tÞ

vðr; tÞ ¼ r

�
_R
2R

−
_H
4H

�
¼ r

�
_R
R
−

_V
4V

�
: ð11Þ

Inserting this expression into Eq. (8), the energy dissipation
function Φ is calculated as

Φ ¼ 3π2ηR4

4V

�
ln

�
R
2ϵ

�
− 1

��
_R −

R _V
4V

�2

þ πξclR _R2; ð12Þ

where ϵ is the molecular cutoff length, which is intro-
duced to remove the divergence in the energy dissipation
at the contact line. Hereafter, we set ϵ ¼ 10−6R0 for all
calculations.
The Onsager principle states that _R is determined by the

condition ∂ðΦþ _FÞ=∂ _R ¼ 0. By Eqs. (7) and (12), this
gives the following evolution equation
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ð1þ kclÞ _R ¼ R _V
4V

þ γLVθðθ2 − θ2eÞ
6Cη

; ð13Þ

where C ¼ lnðR=2ϵÞ − 1, and kcl is defined by

kcl ¼
ξclθ

3Cη
; ð14Þ

which characterizes the importance of the extra friction
constant ξcl of the contact line relative to the normal hydro-
dynamic friction ξhydro ¼ 3Cη=θ [2]. Since not much is
known about ξcl, here we proceed making a simple assum-
ption that the ratio kcl ¼ ξcl=ξhydro is a constant, or a material
parameter determined by the droplet and the substrate.
To simplify the equations, we define two time scales, the

evaporation time τev and the relaxation time τre,

τev ¼
V0

j _V0j
; τre ¼

ηV
1
3

0

γLVθ
3
e
: ð15Þ

The time τev represents the characteristic time for the droplet
(of initial size V0) to dry up, and τre represents the relaxation
time, the time needed for the droplet (initially having
contact angle θ0) to have the equilibrium contact angle θe.
By such a definition, the evolution equation (13)

becomes

ð1þ kclÞτev _R ¼ −
V0R2

4R0V
þ V

1
3

0θðθ2 − θ2eÞ
6Ckevθ3e

; ð16Þ

where kev is defined by

kev ¼
τre
τev

; ð17Þ

which is another important parameter characterizing the
drying behavior. If kev is large, the droplet volume
decreases much faster than the equilibration of the contact
angle θ; therefore, θ becomes much smaller than the
equilibrium value θe. On the other hand, if kev is small,
θ remains close to θe.
For pure water or dilute polymer solutions of macro-

scopic size (diameter 1 mm), kev is less than 10−3. On the
other hand, for concentrated polymer solutions with high
viscosity kev can be larger than 10−1 [27,28].
In Eq. (16), V and θ are functions of time. The evolution

of VðtÞ is given by Eq. (3), which is written as

τev _V ¼ −V0

RðtÞ
R0

: ð18Þ

Finally, θ is related to R and V by

θ ¼ 4V
πR3

: ð19Þ

Equations (16), (18), and (19) are the set of equations that
determine the time evolution of our system.
By using the same model, we can calculate the distri-

bution of the deposit left on the substrate. We consider the

solute located at position r0 at time t ¼ 0. As the solvent
evaporates, such a solute is convected by the fluid. Let
~rðr0; tÞ be the height-averaged position of such a solute
at time t. Since the diffusion of the solute in the radial
direction can be ignored for macroscopic droplets [29], we
can assume that the solute moves with the same velocity as
the fluid as long as the solute is in the droplet [i.e., as long
as ~rðr0; tÞ < RðtÞ]
_~rðr0; tÞ ¼ v½~rðr0; tÞ; t�

¼
�
_R
R
−

_V
4V

�
~rðr0; tÞ for ~rðr0; tÞ < RðtÞ: ð20Þ

Such a solute will be deposited on the substrate at the time
td that satisfies RðtdÞ ¼ ~rðr0; tdÞ (notice that td defined
in this way is a function of r0). The total amount of solute
that was originally contained in the region between r0 and
r0 þ dr0 at time t ¼ 0 is 2πr0hðr0; 0Þϕ0dr0, and this is
deposited in the region between ~r and ~rþ d~r. Hence, the
density of the deposit at the position ~r is given by

μ½~rðr0; tÞ� ¼ hðr0; 0Þϕ0

r0
~r

�
d~r
dr0

�
−1
: ð21Þ

Figure 2 shows the deposition density obtained by such
a calculation. Here, the initial contact angle θ0 and the
equilibrium contact angle θe are taken to be equal to 0.2.
Figure 2(a) corresponds to the case of fast evaporation
where kev ¼ 1, while Fig. 2(b) corresponds to the case of
slow evaporation where kev ¼ 10−3. It is seen that in both
cases the peak position shifts inward with the decrease of
kcl. When kcl ¼ 100, the contact line does not move much
from the initial position R0, and the coffee-ring pattern
appears. On the other hand, when kcl ¼ 0, most solute is
accumulated at the center of the droplet, and a mountainlike
pattern appears.
Figure 3 shows the peak position rp of the deposit profile

μðrÞ plotted as a function of kcl. When kcl is very large, rp is
equal to R0. As kcl decreases, rp decreases also. For large
values of kev (kev ≥ 0.1), rp is independent of kev, while for
small values of kev (kev < 0.1), rp becomes a function of kev.
We can derive an analytical expression for rp for large

values of kev. For kev ≫ 1, the second term on the right-
hand side of Eq. (13) can be ignored, and the evolution
equation for R becomes

_R ¼ 1

4ð1þ kclÞ
R _V
V

: ð22Þ

By use of Eqs. (11) and (22), Eq. (20) is written as

_~r ¼ −kcl ~r
_R
R
; ð23Þ

which is solved as ~rðr0; tÞ ¼ r0½RðtÞ=R0�−kcl . The solute
initially located at r0 is deposited at time td when ~rðr0; tdÞ
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becomes equal to RðtdÞ, i.e., r0½RðtdÞ=R0�−kcl ¼ RðtdÞ. This
gives the following relation between ~rðr0; tdÞ ¼ RðtdÞ
and r0:

~rðr0; tdÞ ¼ RðtdÞ ¼ ðr0Þ
1

1þkclðR0Þ
kcl

1þkcl : ð24Þ

Inserting Eq. (24) into the expression for μ in Eq. (21), we
have

μð~rÞ ¼ ϕ0H0ð1þ kclÞ
�

~r
R0

�
2kcl

�
1 −

�
~r
R0

�
2ð1þkclÞ�

: ð25Þ

By maximizing μð~rÞ with respect to ~r, we have an explicit
expression for the peak position rp

rp ¼ R0

�
kcl

2kcl þ 1

� 1
2ð1þkclÞ: ð26Þ

This curve is shown by the black solid line in Fig. 3,
which agrees quite well with the numerical results. When

kcl ≫ 1, rp approaches R0, giving the coffee-ring pattern
(Deegan’s limit), while when kcl ≪ 1, rp goes to zero,
leading to the mountainlike deposition (Freed-Brown’s
limit). Equation (26) smoothly interpolates these two limits.
As seen in Fig. 3, the curve rp=R0 vs kcl starts to deviate

from the analytical formula (26) for kev ≤ 10−2. This
deviation can be understood by looking at the droplet
shape during drying.
Figure 4 shows the time evolution of droplet shape and

deposition pattern for both fast evaporation (kev ¼ 1) and
slow evaporation (kev ¼ 10−3) [30]. When the evaporation
rate is fast, the solvent is taken out from the surface of the
droplet, inducing a large deformation of the droplet. Hence,
the contact angle θðtÞ decreases in time, while the contact
radius RðtÞ remains almost constant [Fig. 4(a)]. As a result,
the deposit peak appears near R0 [Fig. 4(b)]. On the
other hand, when the evaporation rate is slow, a fluid flow
is induced to maintain the equilibrium contact angle.
Accordingly, the contact radius RðtÞ decreases in time
[Fig. 4(c)], and the deposit peak appears inside the original
contact area [Fig. 4(d)].
Since there is no quantitative study about the relation

between the drying condition and the deposition pattern, it is
difficult to make a quantitative comparison between the
theory and experiments. However, a qualitative comparison
can be made. Li et al. [6] studied various solution droplets
placed on different substrates, and observed the transition of
the deposition pattern from a coffee ring to mountainlike.
With a weak contact angle hysteresis substrate (like a silica
glass or polycarbonate substrate for the water droplet), the
contact line recedes and forms the mountainlike deposition
patterns. On the other hand, for a strong contact angle
hysteresis substrate (like graphite), the contact line is pinned
and leaves coffee-ring patterns. These observations are in
agreement with the present theory. Kajiya et al. [11] studied
the drying of awater-poly(N,N-dimethylacrylamide) PDMA

FIG. 3. The peak position rp of the deposit density distribution
is plotted against kcl. The results of the numerical calculation for
various values of kev are denoted by symbols, while the analytical
result (26) is denoted by the black-solid line. All other parameters
are the same as in Fig. 2.

FIG. 2. Profile of the deposit left on the substrate when the
drying is completed. The coffee ring to the volcanolike and then
to the mountainlike pattern transition induced by changing the
value of kcl from 100 to 0. (a) The case of a fast evaporation
rate characterized by kev ¼ 1 and (b) the case that the evaporation
rate is small with kev ¼ 10−3. For both cases, θe ¼ θ0 ¼ 0.2 and
Δt=τev ¼ 10−5.
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droplet on a glass substrate and observed volcanolike
deposition patterns. They have explained the volcanolike
pattern based on themobility of the contact line,which is also
consistent with our theory.
In this Letter, we have proposed a simple model for a

drying droplet that accounts for the contact line motion and
the solvent evaporation simultaneously. We have clarified
how the contact line friction (described by kcl) and the
evaporation rate (described by kev) affect the final depo-
sition pattern, especially the transition from coffee ring to
volcanolike and then to mountainlike patterns. What
remains to be done is to include a stick-slip mechanism
in the model to capture the multiring phenomena and other
more interesting deposition patterns.
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