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We study stress time series caused by plastic avalanches in athermally sheared disordered materials.
Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-
rate dependence of the stress-drop duration and size distributions together with their average temporal
shape. We find critical exponents different from mean-field predictions, and a clear asymmetry for
individual avalanches. We probe scaling relations for the rate dependency of the dynamics and we report a
crossover towards mean-field results for strong driving.
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Many materials respond to slow driving with strongly
intermittent dynamics. Examples include Barkhausen noise
in ferromagnets [1–3], stick-slip motion in earthquakes [4],
serration dynamics in plasticity of solids [5], and avalanche
dynamics in crack propagation [6,7], driven foams [8], and
domain wall motion [9].
As in equilibrium critical phenomena, global quantities

linked to such bursting collective events are usually power-
law distributed and allow for the introduction of scaling
functions. In the slow driving limit, the onset of motion can
be interpreted as an out-of-equilibrium phase transition,
suggesting the existence of families of systems that display
similar avalanche statistics. To better identify this univer-
sality classes, both experimental [10–17] and theoretical
[13,18–21] works have discussed the avalanche “shapes,”
going beyond the study of scaling exponents.
In deformation experiments of amorphous systems, such

as grains, foams, or metallic glasses, avalanche dynamics
are typically evidenced in the time series of the deviatoric
component of the stress tensor. In the limit of vanishing
deformation rate, we approach the so-called “yielding
transition.” The question of whether or not yielding can
be characterized as a continuous dynamical phase transi-
tion, belonging to a specific universality class, is still under
debate. The analysis of avalanche statistics close to yielding
has, therefore, a particular relevance.
In this Letter, we study the emerging yielding dynamics

in a simple shear geometry with imposed driving rate. Our
focus lies on the shear-rate dependence of the avalanche
statistics and thus complements recent quasistatic (QS)
studies [22–25]. To address the low shear-rate regime, we
use a coarse-graining approach, proven to yield qualitative
and quantitative relevant predictions [26–31], and compare
the low shear-rate results of our mesoscale model with
quasistatic particle-based simulations.
Molecular dynamics (MD).—We consider a mixture of A

and B particles interacting via a Lennard-Jones potential:

VABðrÞ ¼ 4ϵAB½ðσAB=rÞ12 − ðσAB=rÞ6�, with r being the
distance between two particles. Units of energy, length,
and mass are defined by ϵAA, σAA andmA, the unit of time is
given by τ0 ¼ σAA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmA=ϵAAÞ
p

. The potential is truncated
at Rc ¼ 2.5 and a force smoothing is applied between an
inner cutoff Rin ¼ 2.2 and Rc. The two species of particles
have equal mass m, but different interaction parameters to
prevent crystallization. We set ϵAA ¼ 1.0, ϵAB ¼ 1.5,
ϵBB ¼ 0.5, σAA ¼ 1.0, σAB ¼ 0.8, σBB ¼ 0.88, and
m ¼ 1. The ratio of particles of species A and B is chosen
NA=NB ¼ 13=7 and 8=2 for 2d and 3d systems, respec-
tively. Glassy states are obtained (with LAMMPS [32]) by
quenching to zero temperature at constant volume systems
equilibrated at T ¼ 1. An athermal system is achieved by
applying to each particle a viscous drag force Fdrag ¼ −Γv,
where v is the particle peculiar velocity. We condition the
dynamics to be strongly overdamped [22,33] (Γ ¼ 1).
Avalanche statistics are obtained following a quasistatic
protocol [22,23]. We impose simple shear at rate _γ ¼ 10−6

by deforming the box dimensions and remapping the
particle positions. Following Ref. [22], the shear rate _γ
is set to zero when a steep increase in kinetic energy occurs
(onset of plastic deformation) and only restored when the
kinetic energy drops below a threshold.
Elastoplastic (EP) model.—We coarse grain an amor-

phous medium onto a mesoscopic lattice: each node
represents a block of material holding exactly one shear
transformation [33–36], for which we assume the same
geometry as the globally applied simple shear. To each site i
we associate a local scalar shear stress σi and a state
variable ni, indicating whether the site plastically deforms
(n ¼ 1) or not (n ¼ 0). Local stresses evolve with the
overdamped dynamics:

∂tσi ¼ μ_γ þ μ
X

j

Gij∂tγ
pl
j ; ð1Þ
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with μ ¼ 1 the elastic modulus, _γ the externally applied
shear rate, τ ¼ 1 a mechanical relaxation time, and
∂tγ

pl
j ¼ njσj=μτ the strain rate produced by a plastic

rearrangement at site j. Gij denotes the discretized
Eshelby propagator [37], which obeys a quadrupolar
symmetry in the shear plane with a dipolar long-range
character, Gðr; r0Þ ¼ cosð4θrr0 Þ=jr − r0jd. A site yields
(ni ¼ 0 → 1) when its stress reaches a local threshold,
σi ≥ σyi , and recovers its elastic state (ni ¼ 1 → 0) when a
prescribed local deformation increment is attained after
yielding,

R j∂tσi=μþ ∂tγ
pl
i jdt ≥ γc. Each time a site yields

a new yield stress, σyi is drawn from a distribution of mean
σ0. Model details and parameter choices can be found in
Ref. [38] and in the Supplemental Material [39].
Stress-drop statistics and shear-rate dependence.—

From the stress-time series we individualize stress drops
and define an extensive quantity S proportional to the
absolute stress difference multiplied by the system volume.
We compare in Fig. 1 the stress-drop distributions PS in the
limit of low _γ for the elastoplastic (EP) model with the
quasistatic molecular dynamics (MD) results. In both two
(2D) and three dimensions (3D), apart from a plateau
regime for small stress drops that depends on shear rate,
numerical integration step, and system size, we fit the data
using a power law PS ∼ S−τfðS=ScÞ, with f an exponen-
tially decaying cutoff function (exponent definitions in
Table I). Noticing that the distributions PS become inde-
pendent of _γ in the zero shear-rate limit and in agreement
with previous works [23,25], we postulate a system-size-
dependent cutoff Sc ∼ Ldf , with df the fractal dimension
of the avalanches [23,25,49]. The comparison of these

stress-drop statistics with MD results reveals a fair agree-
ment, up to an arbitrary scaling factor related to the
difference in simulated length scales.
The fitted values of τ for the EP model, both in two and

three dimensions (τ2D ≃ 1.28, τ3D ≃ 1.25), compare very
well with our and earlier obtained MD results [22,23], are
compatible with previous lattice models [54], and lie within
error bars of those provided by FEMmodels [55]. Still, they
disagree with what was obtained with quasistatic protocols
in cellular automaton models [25] (especially in 3D, where
τQS3D ≃ 1.43), and they contrast even more with the usual
mean-field (MF) prediction [52] τMF ¼ 3=2 (see Ref. [56]
for an alternative analysis). The values obtained for df
(d2Df ≃ 0.9, d3Df ≃ 1.3) are compatible with quasistatic MD
simulations, but slightly smaller than those reported in
automaton models [25]. They suggest a line geometry of
the correlated slip events [24,57], with a modest but clear
trend towards a more compact structure in 3D.
Some main results concerning the finite driving rate are

summarized in Fig. 2 for the 3D EP model; similar results
are found for the 2D case (not shown). The consequences of
applying a finite shear rate are twofold [58].
(I) The first important observation is that with increasing

driving rate the critical exponents tend towards the mean-
field predictions. The yielding exponent β, for example,
defined through _γ ∝ ðσ − σcÞβ, can be derived from the fits
in Fig. 2(a) rendering a nontrivial value β≃ 1.55 in the low
shear-rate regime. For larger shear rates, this value crosses
over to β ∼ 2 predicted by the Hebraud-Lequeux model
[51]. By sliding a fixed size logarithmic window in _γ
(comprising∼12 points of the main plot data set) and fitting
within, we show the resulting 1=β as a function of the
starting position of the window in the inset of Fig. 2(a).
Similarly we observe a crossover of the exponents in the
steady-state distribution Px of the local stress excess
[53,59], xi ≡ σyi − σi; see Fig. 2(b). Again, in the limit
of vanishing shear rates, we observe the curves approaching
a shape that initially grows as Px ∼ xθ, with a nontrivial
exponent, as found in the quasistatic case [25,53], attrib-
uted to an anomalous random walk process of the local
stress with an absorbing boundary condition at x ¼ 0 [60].
However, as we increase the shear rate, Px changes,
eventually yielding θ≃ 0. The driving progressively
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FIG. 1. Stress-drop size distributions. Main panels show rescaled
distributions LdfτPS versus S=Ldf of the EP model compared to
MD quasistatic simulations (arbitrary shift applied for the com-
parison). Insets show not-scaled curves. (a) 3D EP model data for
linear system sizes L ¼ 16 (green circles), 32 (orange squares), 64
(blue diamonds), 128 (plum triangles), and shear rate 10−4 (full
symbols). For L ¼ 32, _γ ¼ 10−3, 10−5 are also shown (light and
dark orange open squares). Gray scale triangles correspond to
quasistatic 3DMDwithL ¼ 40, 60, 80 (from light to dark). (b) 2D
EP data for linear system sizes L ¼ 256 (green circles), 512
(orange squares), 1024 (blue diamonds), and 2048 (plum triangles)
at _γ ¼ 10−5. Gray scale triangles correspond to quasistatic 2D MD
with L ¼ 80, 160, 320 (from light to dark).

TABLE I. Measured exponents for the avalanche statistics.

Expression EP 2D EP 3D (1=r2) depinning 1D MF

β _γ ∼ ðΔσÞβ 1.54(2) 1.55(2) 0.625(5) [50] 2 [51]
τ PS ∼ S−τ 1.28(5) 1.25(5) 1.25(5) [6,7] 1.5 [52]
df Sc ∼ Ldf 0.90(7) 1.3(1) ∼1.38 [50] � � �
τ0 PT ∼ T−τ0 1.41(4) 1.44(4) ∼1.43 [6] 2 [52]
α Tc ∼ _γ−α 0.38(4) 0.30(4) � � � � � �
z T ∼ lz ∼0.57 ∼0.82 0.77(1) [50] � � �
δ S ∼ Tδ 1.58(7) 1.58(5) ∼1.7 [6] 2 [52]
θ Px ∼ xθ 0.52(3) 0.37(5) 0 1 [53]
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dominates over the signed kicks from elastic interactions,
yielding a biased diffusion of the x’s values. This ultimately
produces a strictly positive local stress evolution, resem-
bling the x dynamics of the depinning problem [25]. The
inset of Fig. 2(b) shows a feature compatible with the shear-
rate dependence of Px and with the β crossover. For
different shear rates, we plot k_γS1.5PS versus S, where
k_γ is an arbitrary scaling coefficient to separate the curves
and improve visualization. We observe a range of low shear
rates where the slope of the transformed distributions is
almost unchanged and fully consistent with Fig. 1(a).
Above a rate of deformation of about ∼0.015, curves
progressively flatten, eventually becoming horizontal.
Plotting S1.5PS, we show the departure of PS from the
MF expectation PMF

S ∝ S−1.5 as the critical point is
approached. When investigating the distribution of stress
fluctuations ηi ¼

P
j≠iGijðnjσj=τÞ on each site, we find

consistently a change from a peaked distribution with fat
tails towards Gaussian-like distributions as we increase the

shear rate. We infer from this that the strong correlations at
vanishing shear rates (reason for the nontrivial criticality)
become negligible for stronger driving, so that the expo-
nents end up being well described by mean-field
assumptions.
(II) The second consequence of a finite driving rate is

that the critical scaling regime shows not only finite size but
also finite shear-rate effects [57,61]. When imposing a
finite deformation rate, each stress drop is characterized not
only by its magnitude or size S, but also by its duration T.
For each stress drop we define a given duration T as the
time elapsed between the beginning and the end of the
drop. In Fig. 2(c) we present the distributions of durations
PT for a fixed system size and different shear rates. In the
probed shear-rate regime we find the dependence on L to be
negligible; thus, PTðT; L; _γÞ≡ PTðT; _γÞ. The main panel of
Fig. 2(c) shows rescaled curves assuming the functional
dependence PT ∼ T−τ0gðT _γαÞ, with g an exponentially
decaying function. We obtain for the 3D case, τ03D ¼
1.44 and α3D ¼ 0.3. Naturally, we expect the scaling of
PT to be dominated by a growing length scale ξ in the
critical limit, where the relations T ∼ ξz and S ∼ ξdf hold.
Therefore, we expect a scaling relation S ∼ Tδ with
δ ¼ df=z, that we observe over a range of shear rates,
yielding the exponent δ3D ∼ 1.58 [see Fig. 2(d)], in contrast
to the mean field δMF ¼ 2. More generally, we observe
empirically a power-law scaling of S with T, _γ, and L.
Actually, extending the dependencies of the cutoff values in
size Sc ¼ Ldf and duration Tc ¼ _γ−α, the mean S at each T
should follow S̄ðT; L; _γÞ ¼ CðL; _γÞTδ, with CðL; _γÞ∼
Ldf _γαδ. This relation is fairly verified for the dependence
on _γ, illustrated in Fig. 2(d). A rescaling of the size
dependence leads to an exponent larger by 15% than df
estimated from PS.
Stress-drop shapes.—We address now the analysis of the

functional form of the stress drops, i.e., the time evolution of
the stress-drop velocity [15–17,52]. In Fig. 3(a) we show
rescaled stress-drop velocities VT (stress-drop shapes) for a
3D system, averaged over drops of the same duration T
within the power-law scaling regime of Fig. 2(d). We
observe that drops of short duration show a noticeable
asymmetric shape, with faster velocities at earlier times. As
duration increases, the shape becomes gradually more
symmetric. To analyze this asymmetry of stress-drop shapes
for different durations, system sizes, and applied shear rates,
we fit them with a formula proposed in Ref. [16], VTð~tÞ ∝
B½~tð1 − ~tÞ�c½1 − asð~t − 0.5Þ� (see also Refs. [15,62]), with B
the amplitude of the shape and as a parameter quantifying
the deviation from a symmetric inverted parabola. We
confirm the expected relation c ¼ δ − 1 [recall S ∝ Tδ

and compare Figs. 3(b) and 2(d)]. In our range of parameters
c is almost independent of L and _γ. More relevant for
our analysis is the behavior of the fitting parameter as [see
Fig. 3(b), inset], which shows clearly the crossover from
nearly symmetric to asymmetric shapes as we focus on
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FIG. 2. Shear-rate dependency of the dynamics for the 3D EP
model. (a) Log-log plot of Δσ0 ≡ ðσ − σcÞ=σ0 versus _γ. Circles
correspond to the best estimation of σc=σ0 ¼ 0.687, and crosses,
to choices of 0.683 and 0.691 instead. Full and dashed lines are
power-law fits in selected ranges (extrapolated for comparison).
Inset: Crossover of 1=β as explained in the text. (b) Steady-state
distributions Px of the local distances to threshold x≡ σy − σ for
different shear rates _γ ∈ f10−1.4;…; 10−5g. Inset: Stress-drop
distributions for _γ ∈ f10−1;…; 10−3g, rescaled and shifted as
explained in the text. Arrows indicate the sense of increasing
shear rate. (c) Rescaled distributions of stress-drop duration
_γ−ατ

0
PT versus T _γα for _γ ¼ 10−2, 10−3, 10−4, 10−5 (from light

blue to dark plum, left to right in inset), and system sizes L ¼ 64
(closed symbols) and 128 (open symbols). The dashed line shows a
law PT ∼ T−1.44. Inset: Unscaled data. (d) Average size S̄ for
stress drops of the same duration as a function of T _γα for L ¼ 64
and _γ ¼ 10−2, 10−3, 10−4, 10−5. The dashed line shows S̄ ∼ T1.58.
Inset: Unscaled data, shear rate decreases from left
to right.
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shorter durations T. To avoid a fit with various parameters,
we use an alternative, purely geometrical measurement of the
asymmetry that is relevant even beyond the scaling regime,
ag ¼ R

1
0 f½jVTð~tÞ − VTð1 − ~tÞj�=½VTð~tÞ þ VTð1 − ~tÞ�gd~t.

When computing agðTÞ for different shear rates at fixed T
and L, ag increases as _γ decreases, whereas for fixed T and _γ,
ag decreases as L increases [see inset of Fig. 3(a)]. In the
quasistatic limit, where just one independent avalanche
occurs at a time, we expect asymmetric stress-drop shapes
characterizing individual avalanches. When we increase the
driving rate at fixed system size or, equivalently, increase the
system size at a fixed rate, we expect stress drops to result
from many independent avalanches, since the density of
plastic regions is determined and increased by the driving
strength [57]. Here, the resulting stress-drop shape draws
closer to the mean-field symmetric shape.
Conclusions.—We studied, with a mesoscopic model,

the avalanche statistics close to the yielding transition,
verifying the relevance of our approach by comparing with
particle-based quasistatic simulations. In Table I we sum-
marize the critical exponents obtained for 2D and 3D. Our
results clearly reinforce the idea of a nontrivial universality
class for the yielding transition, in agreement with earlier
findings [23,25,54]. Our estimated exponents confirm
within error bars the scaling relations proposed by Lin
et al. [25]. We also note that our values of τ and τ0 are
indistinguishable from the exponents expected for the 1D
long-range (1=r2) depinning universality class [6,7].
Although the loading path dependence of the critical
exponents remains an open issue, this is an interesting
accordance and points towards the role played by the
avalanche slip-line geometry.
In the regime of larger shear rates we find that several

exponents of the stress-drop statistics draw closer to mean-
field predictions. The rise of an increasing number of

independent regions with yielding activity (parallel occur-
ring avalanches) justifies the crossover to trivially random
statistics. In particular, our data reveal a yielding exponent
approaching the prediction of the Hébraud-Lequeux model
[51,63,64]. Further, the finite shear-rate protocol allows for
the introduction of an additional exponent α that should
enter the scaling relations, given Tc ∼ _γ−α. If we assume a
usual scaling scenario, we expect a diverging length scale
depending on the distance to the yielding point
ξ ∼ ðσ − σcÞ−ν, such that ξ ∼ _γ−ν=β, since _γ ∼ ðσ − σcÞβ.
Then, Tc ∼ ξz yields directly the scaling relation α ¼ zν=β.
We have not measured ν, but assuming ν ¼ 1=ðd − dfÞ
[25] to be valid, we get α2D ¼ 0.34 and α3D ¼ 0.31, close
to our estimated values.
Within the scaling regime for T we observe both

asymmetric and symmetric stress-drop shapes depending
on system size, shear rate, and duration. This is why we
propose to distinguish between individual avalanches
(resulting from correlated plastic events) and stress-drop
shapes (resulting from many independently occurring
avalanches).
The combined study of avalanche size and duration

distributions and avalanche shapes has played an essential
role in our understanding of the universal aspects of
crackling noise and depinning dynamics. With this work,
we provide a first numerical prediction of similar quantities
in the case of the yielding transition, with a clear indication
of a complex non-mean-field behavior. We hope this work
will stimulate and provide a benchmark for future exper-
imental studies on systems undergoing a continuous
yielding transition, for which detailed data on noise
statistics are presently very scarce.
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