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The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are
investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers,
the threshold gain attains a minimum value for a specific cavity length. The experimental results are
explained by an analytical theory for the laser threshold that takes into account the effects of slow light and
random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper
into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and
slow-light enhancement of disorder-induced losses.
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Slow light in photonic crystal (PC) line-defect wave-
guides [1] enhances the interaction between the propagat-
ing light wave and the material of the waveguide, and has
enabled the demonstration of increased material nonlinear-
ity [2], enhanced spontaneous emission into the propagat-
ing mode [3,4], and enhanced material gain [5].
Microcavity lasers can be realized in the same PC mem-
brane structure by exploiting high-quality point-defect
cavities and in the past decade significant progress was
made [6–9], culminating in recent demonstrations of high-
speed electrically pumped structures [10]. Such PC lasers
allow the exploration of new operation regimes, such as
single emitter lasing [11] and ultrahigh speed modulation
[12]. However, while it was shown that slow light in
combination with random spatial disorder leads to very rich
physics [13–19], the role of slow light on lasers realized
using defect cavities has apparently not been systematically
investigated. For the case of passive point-defect cavities, it
is well known that disorder is an important factor limiting
the quality factor [20–23] but the role of slow light in
extended active cavities is not well understood.
In this Letter, we report experimental results on PC

quantum dot lasers with variable cavity length and show
that these attain a minimum threshold gain for a certain
cavity length, in stark contrast to conventional lasers, where
the threshold gain decreases monotonically with cavity
length. These results show that disorder may lead to
fundamental limitations on the performance of nanostruc-
tured lasers, but the results also demonstrate a promising
platform for investigating disorder effects in active
structures.
The PC cavity lasers investigated here are realized in a

250 nm thick InP air-embedded PC membrane [24] with
three layers of quantum dots (QDs) with densities of
∼5.4 × 1010 cm−2, extending over the entire membrane.
QDs are preferred over quantum wells for these studies due
to a low surface recombination and better thermal

characteristics. Details about the fabrication and optical
properties of the QDs can be found in [25]. The PC
structure has a lattice constant of a ¼ 438 nm and an
air-hole radius of 0.25a. A so-called LN cavity [26] is
formed by omitting N air holes in a W1 defect waveguide.
Structures with different cavity lengths, i.e., L1–L20, are
fabricated and characterized. In Fig. 1(a), the red solid
curve illustrates the dispersion of the even TE-like
W1-waveguide mode. As the cavity length increases, the
position of the fundamental mode moves closer to the
Brillouin zone (BZ) edge, as shown by markers, where
the group index strongly increases [26], thus allowing a
systematic investigation of the role of slow light on the laser
properties.
The samples are pumped and monitored vertically using

a microphotoluminescence setup [24]. All measurements
are performed at room temperature. Figure 1(b) shows a
typical example of a measured light-out vs light-in

FIG. 1. (a) Illustration of the PC band diagram for the TE-like
even waveguide mode (solid line) and positions of the funda-
mental cavity mode for L5, L10, and L20 defect cavities
(markers). Shaded areas indicate the light cone and nonguided
modes of the structure. The inset shows a SEM image of an L5
PC cavity laser and the simulated spatial mode profile of the
electric field amplitude. (b) Measured power of the fundamental
modeM1 vs pump power and corresponding theoretical fit (solid
line) for an L9 laser. The inset shows the output spectrum far
above threshold.
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characteristic, obtained by pumping an L9 cavity with a cw
1480 nm beam. The pump power is estimated by multi-
plying the excitation power (Pexc) with the ratio (Γexc) of
the PC cavity area to the total pump area. The inset of
Fig. 1(b) shows the dominance of the fundamental lasing
mode, denoted M1, but also the presence of two higher
order longitudinal cavity modes,M2 andM3. The solid line
in Fig. 1(b) is a fit to a conventional laser rate equation
model, see, e.g., [10], leading to a laser threshold of
∼90 μW and a spontaneous emission factor of β ¼ 0.05.
This β factor is somewhat smaller than values reported in
[10], primarily because of a wide gain spectrum and the
lack of transverse confinement of the gain medium in our
structures. The relatively small β factor enables a precise
extraction of the threshold, and also ensures that we are in a
large-cavity limit, where the total spontaneous emission
rate does not depend appreciably on cavity length.
Figure 2 summarizes the measured variation of the laser

threshold with the cavity length for three sample bars with
the same PC design. The threshold pump density is defined
as PexcΓexc=L, where L is the cavity length. While bars 1
and 2 were located close to each other on the wafer and
fabricated in the same run, bar 3 is more distant and is from
another processing batch. Gain material variations and
fabrication uncertainties are believed to account for the
higher threshold of sample bar 3. The error bar indicates the
largest variation of measured threshold between two
repeated measurements. Lasing was not observed for L1,
L2, and L3 cavities, which is attributed to the increase of
the mirror losses, requiring strong pumping and leading to
additional heating. Despite the difference in absolute gain
level, all of the sample bars show the same qualitative
behavior. From L4 to L8=L9, the threshold decreases
monotonically with cavity length after which it increases.
An optimum cavity length thus exists, for which the laser
threshold density attains a minimum. This behavior is
strikingly different from the case of conventional edge
emitting lasers, where the threshold density decreases
monotonically with length since the mirror losses decrease
in inverse proportion to the cavity length.

In the measurements reported in Fig. 2, we have taken a
number of precautions to eliminate other causes for thresh-
old variation. In particular, the pump profile is kept fixed
with a diameter of 20 μmð∼46aÞ, which is much larger
than the extent of all of the investigated cavities from L1 to
L15. This ensures a uniform illumination, avoiding a
systematic reduction of the pump efficiency with cavity
length. Heating induced by the optical pump beam leads to
a redshift of the laser wavelength. The use of an InP
membrane already significantly improves the thermal
properties compared to more conventional InGaAsP struc-
tures [24]. To further reduce the thermal effect, we
employed pulsed pumping with a pulse width of 500 ns
and a low duty cycle of 2%. The spectral variation of the
lasing mode might also affect the threshold gain via a
wavelength dependent material gain. However, due to the
inhomogeneous size distribution of our QDs, the gain
spectrum is very wide (the photoluminescence spectral
width is larger than 150 nm) and furthermore the mode
frequency is almost independent of cavity length beyond
L8 cavities, cf. Fig. 3(a). Therefore, the variation of
material gain is insignificant.
The variation of the experimentally observed cavity

mode frequencies with cavity length is shown by the
“square” markers in Fig. 3(a). As the cavity length
increases, all modes shift to lower frequencies and the
spacing between neighboring modes decreases.
Qualitatively similar behavior was observed in [8]. From
the mode spacing and the known cavity length we can
calculate the effective group refractive index. The extracted

FIG. 2. Measured threshold pump power density versus cavity
length. The solid lines are guides to the eye.

FIG. 3. (a) Measured cavity mode frequencies (“square”
markers) versus cavity length. The “cross” markers are full
numerical calculations. (b) The measured group refractive index
(markers) for the fundamental mode M1. Solid lines are the
predictions of Eq. (2).
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group index for the fundamental M1 mode, Fig. 3(b),
increases monotonically with the cavity length, consistent
with the mode approaching the BZ edge. For the optimum
cavity length, the group index is of the order of ∼20.
It is already known that disorder in PC waveguides leads

to propagation losses that strongly increase in the slow-
light region [13,18]. Since the fundamental mode moves
deeper into the slow-light region upon increasing the cavity
length, it is perhaps not surprising that an optimum cavity
length exists. However, since the effective material gain per
unit length also increases in the slow-light region [5], and
the positive role of slow light on promoting laser oscillation
in similar-type lasers was suggested [27], a detailed
analysis is required.
We model the laser cavity as an effective Fabry-Perot

resonator, but with the propagating wave to be a Bloch
mode of theW1waveguide. This was shown in [28] to be a
good approximation even for defect cavities as short as a
few lattice periods. The effective length of the cavity is
L ≅ ðN þ 1Þa, where N is the number of missing holes. By
requiring that the Bloch mode experiences a round-trip
phase change of an integer times 2π [29,30], we find that
theMth cavity mode is displaced by △k ≅ Mπ=L from the
BZ edge located at k0 ¼ π=a [26]. Close to this band
minimum we may expand the dispersion to second order:

ωðkÞ ≅ ω

�
π

a

�
þ 1

2

d2ω
dk2

ð△kÞ2: ð1Þ

The deviation of the mode frequency from the BZ edge,
△f, and the slow-down factor, S ¼ nPCg =nbg ¼ vbg=vPCg , thus
become

△f ¼ vbgl2
4

M2

L2
; S ¼ L

Ml2
: ð2Þ

Here, vxgðnxgÞ is the group velocity (group refractive index)
in the PC cavity ðx ¼ PCÞ and in the corresponding
homogeneous material ðx ¼ bÞ, and l2 ¼ ðπ=vbgÞðd2ω=
dk2Þ is a characteristic length scale, inversely proportional
to an effective photon mass.
The predictions of Eq. (2) are shown by the solid lines in

Fig. 3, using nbg ¼ 3.17; l2 ¼ 510 nm, and a band-edge
frequency of 190 THz. The good agreement with experi-
ment supports the validity of our approximate analytical
model. Mode frequencies [“cross” markers in Fig. 3(a)]
obtained from 3D finite-element simulations without
adjustable dispersion parameters further confirm the model.
A rate equation for the cavity photon density Np is

derived by considering the incremental change during one
cavity round-trip time τR ¼ 2SL=vbg . Here, we focus on the
fundamental mode M1 and the laser can be approximately
considered as a single-mode laser because of the domi-
nance of M1. The modal gain per unit length of a Bloch
wave propagating in the structure is gmod ¼ ΓSgmat, where

gmat is the material gain coefficient for the homogeneous
active medium and Γ is the confinement factor [5].
Neglecting spontaneous emission

dNp

dt
¼ vbg ½Γgmat − ðαWG þ αMIRÞ=S�Np: ð3Þ

Here, αMIR ¼ ln½1=ðR1R2Þ�=ð2LÞ and αWG denote the
mirror and waveguide loss. We see that the spatial gain
enhancement due to slow light is canceled out by the longer
round-trip time, which is basically a statement that the rate
of gain per unit time is unaffected by slow light [5,27].
Fabrication induced disorder approximately scales as
αWG ¼ α1Sþ α2S2 [13,18], where the first term accounts
for out-of-plane scattering and absorption losses and the
second term represents backscattering. Since the latter
component does not add coherently to the laser field we
assume that it too acts as a loss term. From this rate
equation, the threshold gain becomes

Γgth ¼ α1 þ α2Sþ 1

2SL
ln

�
1

R1R2

�
: ð4Þ

We see that the mirror loss is reduced in inverse proportion
to the slow-down factor S, while disorder-induced losses
originating from backscatter increase linearly with the
slow-down factor. Since S itself scales linearly with L,
short lasers are dominated by mirror loss, while long lasers
are governed by disorder-induced losses. Figure 4 shows
the calculated length dependence of the modal threshold
gain, Γgth − α1, for the fundamental mode. For
α2 ¼ 0 cm−1, the threshold gain decreases monotonically
with L, as for a conventional semiconductor laser, but for
nonzero α2, an optimum cavity length is found, in good
qualitative agreement with the experimental observations.
For the calculations presented here, we used wavelength
independent mirror reflectivities of R1 ¼ R2 ¼ 0.98, but
qualitatively similar results are obtained using a wavelength
dependent reflectivity, as found, e.g., in [31]. For our
structure, the standard deviation of the variation of hole
radius was measured to be of the order of 1 nm. A

FIG. 4. Calculated threshold gain, Γgth − α1, vs cavity length
for different values of α2. l2 ¼ 510 nm, R1 ¼ R2 ¼ 0.98.
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quantitative prediction of the lasing threshold will require a
knowledge of the detailed variation of the coefficients α1,
α2, R1, and R2 with wavelength, spatial mode distribution,
and fabrication procedure, which is the topic of future
work.
From these results we infer that, in the presence of

disorder, the quality factor of a PC cavity is maximized for
a specific cavity length. In order to further corroborate our
finding we have addressed the problem using a different
theoretical approach. In [32] it was shown that the loss of
disordered waveguides can be efficiently computed by
solving a generalized eigenvalue problem formulated in
a basis of Bloch modes of the regular structure. Disorder
leads to scattering among the Bloch modes and induces
extrinsic losses of the guided modes, since these acquire
Bloch mode components within the light cone. We apply
the approach of [32] to the case of a cavity, which is
represented by a stepwise variation of the average permit-
tivity along the propagation direction of the cavity, corre-
sponding to an effective-index approach. Considering only
a single band, the eigenvalue problem can be formulated as

Dvβ ¼ ωβðIþ VÞvβ: ð5Þ

Here, D is a diagonal matrix in the basis of Bloch modes,
indexed by k, with

ffiffiffiffiffiffiffiffi
Dkk

p ¼ ωk being the waveguide
dispersion. Furthermore, I is the identity matrix and
V ¼ Vcavity þ Vdisorder is the scattering matrix coupling
(hybridizing) the waveguide Bloch modes due to a deter-
minsitic cavity “potential” as well as a random “disorder”
potential. The solution of Eq. (5) gives the eigenfrequencies
of the cavity modes and the corresponding decomposition
on Bloch modes. Figure 5 shows the calculated mode
spectra for an L20 cavity with and without the inclusion of
disorder. A similar graphical representation was used in
[33]. Upon including disorder, further scattering to the light
cone takes place, reflecting the additional spatial frequency
components introduced by the spatial disorder.

Figure 6(a) shows the relative fraction of the mode
spectrum within the light cone, which is an approximate
measure of the loss rate, as a function of cavity length. An
ensemble average over 500 realizations of the random
scattering matrix Vdisorder was performed. Quantitative
results for the absolute loss rates can be obtained using
the approach of [32], but it is beyond the scope of this
paper. However, the features displayed by Fig. 6(a) are
general: In the presence of disorder, the light cone intensity
increases, lending support to the assumption of our
analytical model that disorder-induced backscattering
increases the cavity mode loss. Furthermore, the mode
M1 is found always to dominate. This is in accordance with
our experimental findings, while the approximate analytical
result Eq. (4) suggests that higher-order modes become
dominant deep into the slow-light region.
We next comment on the applicability of these results to

other types of line-defect cavities. Importantly, it has been
demonstrated that the loss depends on the spatial mode
distribution and can be engineered by modifying the rows
of holes next to the line defect [18] and the Q factor can be
significantly increased by implementing a heterostructure
cavity [34]. Figure 6(b) shows 3D finite-difference time
domain simulations for these cavity types, demonstrating
that in these cases the fundamental resonant mode also
obeys a resonance condition △k ≅ π=L, where L ≅ Naþ
lp is the effective cavity length, including a finite penetra-
tion length lp into the mirrors. For both the standard and the
dispersion-engineered structure, lp ≅ a, while for the
heterostructure, lp ≅ 2.3a, due to the slower and smoother
variation of the field at the mirrors [34]. Thus, in all of these
cases, as the cavity length increases, the fundamental mode
approaches the BZ edge, where symmetry dictates that the
band structure becomes flat and the group index, and
consequently the disorder-induced losses, strongly
increase. Thus, while design modifications will change
the detailed variation of laser threshold with cavity length,
the appearance of a minimum is expected for all three PC
structures.
In conclusion, we have experimentally shown that PC L-

cavity lasers display intriguing threshold characteristics,
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with a minimum threshold gain being attained at a specific
cavity length. An analytical model was derived that well
accounts for the experimental results, suggesting that the
observed threshold behavior is a result of the interplay
between slow-light and disorder-induced losses. These
results are important for the understanding and further
development of photonic crystal lasers as well as demon-
strating a platform for systematic investigations of disorder
effects in active (amplifying) media and in cavities.
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