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Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step
model, which describes the ionization as instantaneous tunneling at the electric field maximum and
classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization
in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger
equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing
positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a
nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from
asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron’s initial
momentum in the direction of the external electric field.
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In 1932, MacColl [1] studied the time which may be
associated with the process of a particle approaching from
far away a potential barrier of a height larger than the
particle’s energy and eventually tunneling through the
barrier. Many efforts have been directed toward defining
[2–4] and measuring [5–9] tunneling times. A related open
problem is the question of how long it takes to ionize by
tunneling through a binding potential. Keller et al. have
conducted experiments using the angular streaking tech-
nique aiming to measure tunneling times for ionization
from a bound state, the so-called attoclock experiments
[10,11]. In the tunnel ionization case, a Coulomb-bound
electron is ionized by a strong electromagnetic field, and a
potential barrier can be defined via the electron’s binding
energy and the Coulomb potential bent by the electric
field’s potential; see Fig. 1. Since the attoclock experiments
have been performed, many renewed efforts have been
directed toward defining a tunnel ionization time, because a
consensus on a suitable theoretical definition of tunneling
time and the interpretation of experimental results is still
lacking [10–17].
In the following, we study the time delay τA between the

instant of ionization, i.e., when the electron exits the barrier,
and the instant of electric field maximum t0. One may
reconstruct the moment of ionization from the electron’s
asymptotic momentum pð∞Þ, which reads with the elec-
tron’s charge q and the time-dependent electric field EðtÞ
(applying the dipole approximation and neglecting
Coulomb corrections)

pð∞Þ ¼ pðt0 þ τAÞ þ q
Z

∞

t0þτA

Eðt0Þdt0: ð1Þ

In attoclock experiments, electrons are ionized by ellipti-
cally polarized light, which makes the direction of the
asymptotic momentum very sensitive to the ionization time

t0 þ τA. In the extraction of τA from attoclock experiments,
it is state of the art to treat the ionized electron classically, to
take into account Coulomb corrections, and to assume that
the electron’s initial momentum follows from some semi-
classical theory [18,19]. For a reliable reconstruction of the
attoclock time τA, however, suitable initial conditions have
to be identified as pointed out in Refs. [20,21]. In particular,
assumptions about the initial momentum bias the recon-
structed value for τA.
The popular two-step model of tunnel ionization

assumes a maximal ionization rate at the instant of maximal
electric field strength, i.e., τA ¼ 0, and that free electrons
have zero initial momentum, i.e., pðt0 þ τAÞ ¼ 0. Within
the two-step model, the electron’s asymptotic momentum
follows by solving the classical equations of motion for the
electron’s motion in the combined electromagnetic field of
the binding potential and the ionizing external light pulse.
This model, however, cannot be used as a benchmark for
experiments, because a possible match or mismatch of
experimental data and the theoretical prediction by the two-
step model may be explained by various pairs of nonzero
delay τA [22] and nonzero initial momentum pðt0 þ τAÞ,

FIG. 1. The one-dimensional Coulomb potential, which is bent
by an additional electric field, defines the effective potential VðxÞ
and the tunneling barrier between the points xin and xexit for an
electron, which is given by the wave function ψ0ðxÞ, with the
ground state energy −Ip.
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which may a have nonzero component parallel to the
electric field direction [23,24].
Neither the delay τA nor the initial momentum pðt0 þ τAÞ

are directly accessible by experiments, and it is also
challenging to calculate them analytically. Therefore, we
employ ab initio quantum calculations and a virtual
detector [25,26] at the tunnel exit. The virtual detector
technique allows us to determine directly the electron’s
time of arrival at the tunnel exit as well as its exit
momentum.
We analyze theoretically an initially bound electron

ionized by an electric field pulse. To determine the time
delay τA and the exit momentum, we solve the time-
dependent Schrödinger equation and place a virtual detec-
tor at the tunneling exit. The virtual detector is realized by
calculating the probability current at the exit. The most
probable time delay τA is determined by comparing the
instant of maximum probability current at the potential
barrier exit and the instant of maximum electric field
strength. The exit momentum is determined by the
space-resolved momentum distribution at the tunnel exit
at the instant of ionization. By separating the wave function
into a tunneled part and a bound part after the interaction
with the laser pulse, we can calculate the momentum
distribution of the tunneled electron, from which one
can determine the most probable asymptotic momentum.
Considered system.—In experiments, a Coulomb-bound

electron is usually excited by a laser pulse with a
wavelength much bigger than the atomic dimensions such
that the laser pulse is nearly homogeneous over the size of
the atom. Furthermore, relativistic effects and effects due
to the magnetic field component set in only for tunneling
from highly charged ions [27]. Thus, we will apply the
electric dipole approximation. The laser pulse is modeled
by a time-varying homogeneous electric field EðtÞ ¼
E0 exp½−ω2ðt − t0Þ2=2�, where t0 denotes the instant of
the maximum field strength E0 and τE ¼ ffiffiffi

2
p

=ω is the
time scale of the rise and decay of the electric field. The
linear polarization of the electric field and neglecting
the magnetic field component render the motion of the
electron quasi-one-dimensional, allowing us to investigate
general features of tunneling times in a one-dimensional
scenario. Furthermore, tunneling in the fully three-
dimensional Coulomb problem can be described by an
effective one-dimensional tunneling barrier via introduc-
ing parabolic coordinates [28]. Thus, we restrict ourselves
to one-dimensional systems and consider an electron
bound to the soft-core potential −Z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ αðZÞ

p
[29–32] to model the essential features of an electron
in a three-dimensional Coulomb potential. Here, Z is the
atomic number, and the softening parameter αðZÞ ¼ 2=Z2

is chosen such that the ground state energy of the soft-
core potential is −Ip ¼ −Z2=2, which equals the ground
state energy of the Coulomb potential [33]. Thus, the
Schrödinger equation (in atomic units)

i
∂ψ
∂t ¼ ĤðtÞψ ¼

�
−
1

2

∂2

∂x2−
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þαðZÞ
p −EðtÞx

�
ψ ð2Þ

with the Hamiltonian ĤðtÞ and the effective potential
Vðx; tÞ ¼ −Z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ αðZÞ

p
− EðtÞx will be solved

numerically [34]. The so-called Keldysh parameter γ ¼
ω

ffiffiffiffiffiffiffi
2Ip

p
=E0 [12] characterizes the ionization process as

dominated by tunneling for γ ≪ 1 and by multiphoton
ionization for γ ≫ 1. Thus, simulation parameters will be
set such that γ < 1 in the following.
Time delay τA.—The time delay τA is based on the time-

dependent ionization rate. In our one-dimensional model,
the probability current jðx; tÞ ¼ ½ψðx; tÞ�∂xψðx; tÞ −
ψðx; tÞ∂xψðx; tÞ��=ð2iÞ represents the average net number
of electrons passing a given point at a specific time.
Thus, we determine the ionization rate via the probability
current at the exit xexit as a function of time, where xexit is
defined by the maximum electric field strength E0 via
Vðxexit; t0Þ ¼ −Ip. Monitoring the probability current at a
fixed position is justified, because the tunnel probability is
maximal for EðtÞ ¼ E0 and it is exponentially suppressed
for lower electric fields. Furthermore, EðtÞ ¼ E0½1 −
Δt2=τ2E þOðΔt4=τ4EÞ� for Δt ¼ t − t0 with jΔtj < τE ¼
2

ffiffiffiffiffi
IP

p
=ðγE0Þ. Thus the tunneling barrier does not change

substantially if times close to t0 are considered. To further
ensure that the calculated exit xexit is where the electron
exits the barrier, we place a virtual detector at different
points between xin and xexit and calculate jðx; tÞ at each
point as a function of time. As shown in Fig. 2, the
probability current has a positive peak as well as a negative
one for x < xexit, indicating the tunneling and reflection
dynamics, respectively. This tunneling and reflection
dynamics corresponds to under-the-barrier dynamics. As
reflection is absent for x ≥ xexit, the particle leaves the
barrier at xexit.

FIG. 2. The probability current jðx; tÞ as a function of time at
different positions x between the barrier entry x ¼ xin and the
barrier exit xexit separated by Δx ¼ ðxexit − xinÞ=5 for the param-
eters E0=Z3 ¼ 0.048 and γ ¼ 0.25. The shadowed area repre-
sents the time between the instant of maximum electric field
strength t0 and the instant of maximum probability at xexit.
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The most probable time delay τA is calculated by
subtracting the instant of the maximum field strength
from the instant of the maximum current, i.e., τA ¼
argmaxjðxexit; tÞ − argmaxEðtÞ, which yields the positive
time delay shown in Fig. 3. Note that, for the parameters
used in Fig. 3, τA < τE, and thus the electric field remains
almost constant for times jΔtj⪅τA, justifying our choice
for xexit.
The origin of the time delay τA can be understood by

considering the time-energy uncertainty principle and
following its interpretation given by Mandelstam and
Tamm [14,35–37]. As a consequence of the time-energy
uncertainty principle, the time, which a wave function ψ of
a system with a time-independent Hamiltonian Ĥ needs to
change significantly, is bounded from below by 1=ð2σĤÞ,
where σĤ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jĤ2jψi − hψ jĤjψi2

q
. As outlined in the

previous section, the Hamiltonian in (2) can be considered
as time independent for times jΔtj < τE. This allows us to
define the Mandelstam-Tamm time

τMT¼
1

2
ðhψðt0ÞjĤðt0Þ2jψðt0Þi−hψðt0ÞjĤðt0Þjψðt0Þi2Þ−1=2;

ð3Þ

which is indeed a lower bound to the time delay τA as
indicated in Fig. 3. The time delay τA is close to its lower
bound τMT, which indicates that the delay τA is a conse-
quence of the wave function’s inertia, i.e., its inability to
adopt instantaneously to the field. The time delay τA
decreases as E0 increases at fixed Keldysh parameter γ
and matches approximately τMT when the regime of
over-the-barrier ionization is approached, which is for
E0=Z3 ≈ 0.06 a:u.
The observed decrease of the delay τA with growing

electric field strength (but constant γ) is consistent with

calculations for the case of a sudden turn-on of the electric
field, which show that the time for the wave function to
adopt to the electric field is proportional to the Keldysh
time τK ¼ ffiffiffiffiffiffiffi

2Ip
p

=E0 [14,37], although the functional
dependence on E0 is different for continuously changing
electric fields. For a fixed maximum electric field strength
E0 but increasing γ, the time delay τA increases. As γ
increases, the pulse duration decreases, granting the wave
function less time ∼τE to evolve and to adopt to the time-
varying Hamiltonian during the rise of the electric field.
Thus, the wave function has less time to develop the
necessary components for tunneling and thus needs more
time to reach the maximum ionization rate.
The times τA and τMT are intractable by analytical

methods. As we will demonstrate in the following, how-
ever, one may employ the Wigner time as an approximation
for τA. Comparing the quantum mechanical Wigner tra-
jectory tWðxÞ [24,27] to the trajectory tcðxÞ of a classical
particle, which travels instantaneously from xin to xexit and
then moves according to the classical equations of motion,
we can calculate the time delay

τsub ¼ tWðxexitÞ − tcðxexitÞ; ð4Þ

where the Wigner and the classical trajectories tWðxÞ and
tcðxÞ are determined such that both coincide at the entry
point xin.
The delay τA describes the time interval that the electron

spends under the barrier after the field maximum.
Interpreting τA as a tunneling time [18] is justified only
if the classical forbidden region is entered at the field
maximum. The Wigner delay (4), however, represents the
total time spent under the barrier, since the relation
tcðxinÞ ¼ tcðxexitÞ holds in the classical model. Also, the
time delay τA is often understood as the time under the
barrier. Our numerical results show that τsub is indeed close
to the time delay τA, as shown in Fig. 3, where τsub is
calculated for the one-dimensional Coulomb potential.
Although τsub and τA agree well, it is open if τA should
be interpreted as time spent under the barrier, because
the interpretation as under-the-barrier time is based on the
assumption that tunneling starts at the instant of the
maximal electric field, but the wave function could pen-
etrate the tunneling barrier earlier.
For the one-dimensional Coulomb potential and at field

intensities approaching the over-the-barrier threshold, the
Wigner time is given by τsub ≈ 14.29

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16E0=Z3

p
=Z2,

and by τsub ≈ 9.0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9.5E0=Z3

p
=Z2 for the three-dimen-

sional case. Furthermore, the Wigner formalism can be
extended [38] to include the Stark shift and also multi-
electron effects. The resulting Wigner time τsub for helium
is shown exemplarily in Fig. 4 as a function of the laser’s
peak intensity.
Exit momentum.—In the following, we determine the

quantum mechanical exit momentum p0 in the direction of

FIG. 3. The time delay τA, the Mandelstam-Tamm time τMT,
and the times τ2 and τsub plotted for different electric field
strengths E0 and for different Keldysh parameters γ. Definitions
of the various times are given in the main text.
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the electric field at the tunnel exit xexit at the instant of
ionization t ¼ t0 þ τA by two different methods. In the first
method, we calculate a space-resolved momentum distri-
bution around x ¼ xexit by multiplying the wave function
ψðx; t0 þ τAÞ by a Gaussian window function with mean
xexit and width δx ¼ ðxexit − xinÞ=20 and calculating its
Fourier transform ~ψ exitðt0 þ τAÞ. The most probable exit
momentum p0 can be inferred by the momentum where
j ~ψ exitðt0 þ τAÞj2 is maximal. In the second method, the
most probable initial momentum p0 is determined from
the probability current jðxexit; t0 þ τAÞ at the exit at the
instant of the maximum probability current. Following
Refs. [25,26], the local velocity of the wave function’s
probability flow at xexit equals v ¼ jðxexit; t0 þ τAÞ=
jψðxexit; t0 þ τAÞj2. Both methods yield very similar results
for the moment p0 as shown in Fig. 5. The initial
momentum p0 is almost independent of the parameter γ
and depends only weakly on the electric field strength E0.
As p0 does not depend on the parameters of the external

electric field, it must result from the initial quantum state,
i.e., the ground state of the binding potential. In fact, the
ground state of the employed soft-core potential has in

momentum space a width of about 0.38 × Z, which is of the
same order as p0; see Fig. 5. The fact that p0 scales with the
width of the ground state’s momentum distribution and not
with its mean (which is zero) may be interpreted as
momentum components, which propagate into the ioniza-
tion direction, being ionized preferably.
Implications.—The above considerations are relevant for

every high-precision laser-induced tunneling experiment.
Here we discuss as an example attoclock measurements due
to their currently high attention. Attoclock experiments aim
to determine the time delay τA between the instant of the
electric field maximum and the instant of tunneling, which
is not directly accessible experimentally. Instead, the
asymptotic momentum of the tunneled electron is mea-
sured. As it depends on the exit momentum and on the
moment at which the electron starts to propagate freely in
the field, one can infer τA from the electron’s asymptotic
momentum provided that the exit momentum is known.
The delay τA is commonly reconstructed by assuming zero
initial momentum in the electric field direction. Our
numerical simulations and the virtual detector approach,
however, indicated a nonzero initial momentum in the
direction of the electric field. How does the zero-initial-
momentum assumption affect the reconstruction of τA from
the asymptotic momentum?
To answer this, we determine the final momentum of the

tunneled electron by propagating the wave function ψðtÞ till
some final time tf such that tf − t0 ≫ 1=ω and separate the
tunneled part ψ freeðtfÞ from the bound part of the wave
function by projecting out all bound eigenstates of ĤðtÞ in
Eq. (2) for EðtÞ ¼ 0 from ψðtfÞ. From the resulting
probability density in momentum space representation
~ψ freeðtfÞ, the most probable momentum pf;q can be inferred
by the position where j ~ψ freeðtfÞj2 is maximal. Using the
Newton equations of motion for an electron in the effective
potential Vðx; tÞ, we can calculate at which instant of time
the electron must exit the barrier at xexit with zero initial
momentum in the electric field direction such that its
asymptotic momentum equals pf;q. The result is the time
delay τ2, which is also shown in Fig. 3 and that does not
coincide with the delay τA. The delay τ2 is close to zero or
even negative depending on the electric field strength as
found in Refs. [20–22,24,27]. Consequently, the delay τA
and the instant of tunneling cannot be determined on the
basis of the standard assumption of zero initial momentum
in the electric field direction. The exit momentum has to be
included.
Similarly to the delay τ2, also the time delays determined

from measured asymptotic momenta are close to zero (of
the order of experimental uncertainties) [10,11]. As our
numerical calculations indicate that the reconstruction of
the delay τA from asymptotic momenta is sensitive to the
electron’s exit momentum, we argue that a possible non-
zero exit momentum into the electric field direction has to
be included for a reliable reconstruction of τA in attoclock

FIG. 4. Wigner time τsub, which is an estimate for τA, for the
three-dimensional Coulomb potential including Stark shift and
multielectron effects as a function of the electromagnetic field’s
peak intensity I for ionization of helium atoms by linearly
polarized laser fields. The applied wavelength is λ ¼ 800 nm,
and the Keldysh parameter varies from 0.6 to 0.2.

FIG. 5. The momentum p0 at the time t0 þ τA at the tunnel exit
xexit for different electric field strengths E0 and different Keldysh
parameters γ as determined by two different methods. Method 1
is based on the space-resolved momentum distribution, while
method 2 utilizes the velocity of the probability flow; see the
main text for details on both methods.
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experiments, not only a nonzero exit momentum in the
direction perpendicular to the electric field as recently
proposed [20,39].
Conclusions.—We reexamined tunneling times in strong

field ionization by an ab initio solution of the time-
dependent Schrödinger equation. Our calculations show
that there is a delay τA between the maximum of the
ionization rate and the maximum of the electric field
strength and a nonzero exit momentum p0 in the electric
field direction. The delay τA can be explained as the
response time needed by the wave function to react to
the change of the driving electric field. The initial momen-
tum can be estimated from the width of the ground
state’s momentum distribution, which is Z for the three-
dimensional Coulomb potential. The time τA may be
estimated by the Wigner time τsub. Note that our results
differ from the vanishing tunneling delay as obtained by the
recently introduced analytical R-matrix method [21], which
is based on the assumption that this quasiclassical model
provides a good description of the quantum-mechanical
tunneling dynamics also in the vicinity of the tunneling
barrier.

The authors thank Karen Z. Hatsgortsyan, Michael
Klaiber, Oleg Skoromnik, and Anton Wöllert for valuable
discussions.
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