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We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter
using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-
next-to-leading order (N2LO). The two undetermined 3N low-energy couplings are fit to the 4He binding
energy and, for the first time, to the spin-orbit splitting in the neutron-α P-wave phase shifts. Furthermore,
we investigate different choices of local 3N-operator structures and find that chiral interactions at N2LO are
able to simultaneously reproduce the properties of A ¼ 3; 4; 5 systems and of neutron matter, in contrast
to commonly used phenomenological 3N interactions.
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Three-nucleon (3N) interactions are essential for a
reliable prediction of the properties of light nuclei and
nucleonic matter [1–5]. In quantum Monte Carlo (QMC)
calculations, phenomenological 3N interactions such as
the Urbana [6] and Illinois [7] models have been used with
great success [3,8]. However, such models suffer from
certain disadvantages: They are not based on a systematic
expansion and it was found that the Illinois forces tend to
overbind neutron matter [9,10]. It is therefore unlikely that
these phenomenological models can be used to correctly
predict the properties of heavy neutron-rich nuclei.
An approachwhich addresses these shortcomings is chiral

effective field theory (EFT) [2,11–14]. Chiral EFT is a low-
energy effective theory consistent with the symmetries of
quantum chromodynamics and provides a systematic expan-
sion for nuclear forces. It includes contributions from long-
range pion-exchange interactions explicitly and expands the
short-distance interactions into a systematic set of contact
operators accompanied by low-energy couplings fit to
experimental data. Chiral EFT enables the determination
of theoretical uncertainties and systematic order-by-order
improvement; for recent work see Refs. [15–18].
Chiral EFT also predicts consistent many-body inter-

actions. In Weinberg power counting, 3N forces first enter
at next-to-next-to-leading order (N2LO) [19,20] and con-
tain three contributions: a two-pion-exchange interaction
VC, a one-pion-exchange-contact interaction VD, and a 3N
contact interaction VE. While the first is accompanied by
the couplings ci from the pion-nucleon sector, the latter
two are accompanied by the couplings cD and cE, which
have to be determined in A > 2 systems.
In addition to systematic nuclear forces, reliable many-

body methods are required to describe properties of light
nuclei and of dense neutron matter. QMC approaches,

which solve the many-body Schrödinger equation stochas-
tically, are such a class of methods. Both the Green’s
function Monte Carlo (GFMC) method and the auxiliary-
field diffusion Monte Carlo (AFDMC) method rely on
projection in imaginary time τ,

lim
τ→∞

e−HτjΨTi → jΨ0i; ð1Þ

withH the Hamiltonian of the system and jΨTi a trial wave
function not orthogonal to the many-body ground state
jΨ0i. For a recent review of developments and applications
of QMC methods in nuclear physics, see Ref. [3]. Recently,
we have developed local chiral EFT interactions for use
with QMC methods [21–24], thereby producing nonper-
turbative results for testing the chiral expansion scheme
[22] and benchmarks for neutron matter up to high density
[21,23]. However, these studies were limited to two-
nucleon (NN) interactions only or to an exploratory study
of neutron matter with only the long-range parts of the 3N
interaction.
In this Letter, we include consistent 3N interactions at

N2LO in coordinate space [24] inGFMCcalculations of light
nuclei and n-α scattering, and in AFDMC calculations of
neutronmatter.We fit the two couplings cD and cE to the 4He
binding energy and low-energy n-α scatteringP-wave phase
shifts. The latter system has been studied using various
approaches; see, for example, Refs. [25–27]. These observ-
ables are expected to be less correlated than fits to structure
properties of A ¼ 3; 4 systems because the spin-orbit and
T ¼ 3

2
components of the 3N interaction enter directly.

In phenomenological 3N models, any short-range parts
which arise from the Fourier transformation of pion
exchanges are typically absorbed into other short-distance
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structures: We retain these explicitly. We choose the 3N
cutoff R3N ¼ R0, where R0 is the NN cutoff, and vary the
cutoff in the range R0 ¼ 1.0–1.2 fm [21–24]. Note that
with a finite cutoff certain ambiguities appear, including the
specific operator form associated with the shorter-range
interactions. In the Fourier transformation of VD, two
possible operator structures arise:

VD1 ¼
gAcDm2

π

96πΛχF4
π

X

i<j<k

X

cyc

τi · τk

�
XikðrkjÞδR3N

ðrijÞ

þ XikðrijÞδR3N
ðrkjÞ −

8π

m2
π
σi · σkδR3N

ðrijÞδR3N
ðrkjÞ

�
;

ð2aÞ

VD2 ¼
gAcDm2

π

96πΛχF4
π

X

i<j<k

X

cyc

τi · τk

�
XikðrikÞ

−
4π

m2
π
σi · σkδR3N

ðrikÞ
�
½δR3N

ðrijÞ þ δR3N
ðrkjÞ�; ð2bÞ

where XikðrÞ¼½SikðrÞTðrÞþσi ·σk�YðrÞ is the coordinate-
space pion propagator, SikðrÞ ¼ 3σi · r̂σk · r̂ − σi · σk is
the tensor operator, and the tensor and Yukawa functions
are defined as TðrÞ ¼ 1þ 3=ðmπrÞ þ 3=ðmπrÞ2 and
YðrÞ ¼ e−mπr=r. The smeared-out delta function δR3N

ðrÞ ¼
½1=πΓð3=4ÞR3

3N �e−ðr=R3NÞ4 and the long-range regulator
multiplying Y, flongðrÞ ¼ 1 − e−ðr=R3NÞ4 , are consistent with
the choices made in the NN interaction [21–24]. The sum
i < j < k runs over all particles 1 to A, and the cyclic sum
runs over the cyclic permutations of a given triple.
The two possible VD structures agree in the limit of

R3N → 0, because the delta functions then enforce i ¼ j
(k ¼ j) in the first (second) term, in which case Eqs. (2a)
and (2b) would coincide. The VD interaction does not
distinguish which of the two nucleons in the contact
participates in the pion exchange. The second choice,
VD2, can be obtained with the exchange of a fictitious
heavy scalar particle between the two nucleons in the
contact. This ambiguity was also pointed out in Ref. [28].
The differences between Eqs. (2a) and (2b) are regulator
effects and therefore higher order in the chiral expansion,
but it is important to investigate how they affect different
observables at this order.
Similar effects arise in the 3N contact interaction VE.

Here, the main ambiguity is the choice of the 3N contact
operator. The same Fierz-rearrangement freedom that
allows for a selection of (mostly) local contact operators
in the NN sector up to N2LO exists in the 3N sector at this
order. Symmetry considerations allow the choice of one of
the following six operators [20]:

f1; σi · σj; τi · τj; σi · σjτi · τj;
σi · σjτi · τk; ½ðσi × σjÞ · σk�½ðτi × τjÞ · τk�g: ð3Þ

The usual choice is τi · τj. Here, we investigate two other
choices: first the operator 1, and second a projector operator
P on to triples with S ¼ 1

2
and T ¼ 1

2
:

P ¼ 1

36

�
3 −

X

i<j

σi · σj

��
3 −

X

k<l

τk · τl

�
; ð4Þ

where the sums are over pairs in a given triple. In the
infinite-momentum cutoff limit, only these S ¼ 1

2
; T ¼ 1

2

triples would contribute to VE due to the Pauli principle.
Thus, in the following we will explore three possible
structures:

VEτ ¼
cE

ΛχF4
π

X

i<j<k

X

cyc

τi · τkδR3N
ðrkjÞδR3N

ðrijÞ; ð5aÞ

VE1 ¼
cE

ΛχF4
π

X
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cyc
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ðrijÞ; ð5bÞ

VEP ¼ cE
ΛχF4

π

X

i<j<k

X

cyc

PδR3N
ðrkjÞδR3N

ðrijÞ: ð5cÞ

We stress that there exist other operator-structure possi-
bilities for VD and VE which will be investigated in
future work.
Having specified all 3N structures, we vary the values of

the couplings cD and cE to fit the 4He binding energy, as
shown in Fig. 1(a). We display curves for VD1 and VD2

using VEτ and both cutoffs R0 ¼ 1.0 fm and R0 ¼ 1.2 fm.
In addition, we show curves for VD2 using the other two
possible VE structures and the cutoff R0 ¼ 1.0 fm. For all
of these possibilities, the stars give the values for the
couplings which also fit P-wave n-α scattering phase shifts,
as shown in Fig. 1(b). The resulting couplings cD and cE
are given in Table I. In all cases hVEi is repulsive in 4He,
except for the case with ðD2; EτÞ with the softer cutoff
(R0 ¼ 1.2 fm), where it is mildly attractive.
For R0 ¼ 1.0 fm and VEτ, cD ≈ 0 and both forms of VD

simultaneously fit the 4He binding energy and the P-wave
n-α scattering phase shifts [see Fig. 1(b)]. However, in
the softer-cutoff case R0 ¼ 1.2 fm, VD1 and VD2 lead to
different couplings. For VD1, the splitting between the
two Pwaves appears to saturate in cD for values of cD > 2;
e.g., the 3

2
− phase shift for cD ¼ 2.0; 3.0, and 5.0 at

Ecm ¼ 1.3 MeV are each ∼75 deg, which is ∼35 deg
below the R-matrix value. Since we cannot fit the P-wave
n-α scattering phase shifts in this case (VD1 and
R0 ¼ 1.2 fm), we do not consider it in the following.
Instead, for VD2 and R0 ¼ 1.2 fm, the splitting can be fit, as
is evident from Fig. 1(b). For VD2 using VE1 or VEP and
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R0 ¼ 1.0 fm, both the 4He binding energy and the P-wave
n-α scattering phase shifts can be simultaneously fit: we
show only the case with VEP in Fig. 1(b). There, we also
show the next-to-leading order (NLO) results which are a
clear indication that 3N forces are necessary to properly
describe n-α scattering. Similar results have been found in
Refs. [29–31]. Because A ¼ 3; 4 systems (further discussed
below) are largely insensitive to odd-parity partial waves,
we find no significant dependence on the choice of
structures in VD. However, our results in n-α P-wave
scattering show a substantial sensitivity: VD1 appears to
have a smaller effect than VD2.
In Fig. 2, we show ground-state energies and point

proton radii for A ¼ 3; 4 nuclei at NLO and N2LO using
VD2 and VEτ for R0 ¼ 1.0 fm and R0 ¼ 1.2 fm, in com-
parison with experiment. The ground-state energies of the
A ¼ 3 systems compare well with experimental values. The

ground-state energy of 4He is used in fitting cD and cE, and
so it is forced to match the experimental value to within
≈0.03 MeV. The point proton radii also compare well with
values extracted from experiment. The theoretical uncer-
tainty at each order is estimated through the expected size
of higher-order contributions; see Ref. [32] for details. We

FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for different 3N-operator forms. Triangles are obtained by
using VD1 and VEτ, while the other symbols are obtained for VD2 and three different VE-operator structures. The blue and green lines
(lower and upper) correspond to R0 ¼ 1.0 fm, while the red lines (central) correspond to R0 ¼ 1.2 fm. The GFMC statistical errors are
smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously fit the n-α P-wave phase shifts (see
Table I and the right panel). No fit to both observables can be obtained for the case with R0 ¼ 1.2 fm and VD1. (b) P-wave n-α elastic
scattering phase shifts compared with an R-matrix analysis of experimental data. Colors and symbols correspond to the left panel. We
also include phase shifts calculated at NLO which clearly indicate the necessity of 3N interactions to fit the P-wave splitting.

TABLE I. Fit values for the couplings cD and cE for different
choices of 3N forces and cutoffs.

V3N R0 (fm) cE cD

N2LO ðD1; EτÞ 1.0 −0.63 0.0
1.2

N2LO ðD2; EτÞ 1.0 −0.63 0.0
1.2 0.09 3.5

N2LO ðD2; E1Þ 1.0 0.62 0.5
N2LO ðD2; EPÞ 1.0 0.59 0.0

FIG. 2. Ground-state energies and point proton radii for A ¼
3; 4 nuclei calculated at NLO and N2LO (with VD2 and VEτ)
compared with experiment. Blue (red) symbols correspond to
R0 ¼ 1.0 fm (R0 ¼ 1.2 fm). The errors are obtained as described
in the text and also include the GFMC statistical uncertainties.
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include results from LO, NLO, and N2LO in the analysis
using the Fermi momentum and the pion mass as the small
scales for neutron matter (discussed below) and nuclei,
respectively. The error bars presented here are comparable
to those shown in Ref. [33], although it is worth emphasiz-
ing that our calculations represent a complete estimate of
the uncertainty at N2LO since we include 3N interactions.
Other choices for 3N structures give similar results.
It is noteworthy that NN and 3N interactions derived

from chiral EFT up to N2LO have sufficient freedom such
that n-α scattering phase shifts in Fig. 1(b) and properties
of light nuclei in Fig. 2 can be simultaneously described.
The failures of the Urbana IX model in underbinding
nuclei and underpredicting the spin-orbit splitting in
neutron-rich systems, including the n-α system, were
among the factors motivating the addition of the three-
pion exchange diagrams in the Illinois 3N models [7]. Our
results show that chiral 3N forces at N2LO, including
the shorter-range parts in the pion exchanges, allow the
simultaneous fit. These interactions should be tested further
in light p-shell nuclei.
Finally, we study the full chiral N2LO forces, including

all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine
the effects of different VD and VE structures on the equation
of state of neutron matter. Although these terms vanish in
the limit of infinite cutoff, they contribute for finite cutoffs.
In Fig. 3 we show results for the neutron matter energy per
particle as a function of the density calculated with the

AFDMC method described in Refs. [3,34]. We show the
energies for R0 ¼ 1.0 fm for the NN and full 3N inter-
actions. We use VD2 and the three different VE structures:
VEτ (blue band), VE1 (red band), and VEP (green band).
The error bands are determined as in the light nuclei case.
The VEP interaction fits A ¼ 4; 5 with a vanishing cD;
hence, this choice of VE leads to an equation of state
identical to the equation of state with NN þ VC, as in
Ref. [24] (the projector P is zero for pure neutron systems),
and qualitatively similar to previous results using chiral
interactions at N2LO [35] and next-to-next-to-next-to-
leading order [36].
As discussed, the contributions of VD and VE are only

regulator effects for neutrons. However, they are sizable
and result in a larger error band. At saturation density
n0 ∼ 0.16 fm−3, the difference of the central value of the
energy per neutron after inclusion of the 3N contacts VE1 or
VEτ is ∼2 MeV, leading to a total error band with a range of
∼6.5 MeV when considering different VE structures. This
relatively large uncertainty can be qualitatively explained
when considering the following effects. Because the
expectation value hPi<jτi · τji has a sign opposite to that
of the expectation value h1i in 4He, cE will also have
opposite signs in the two cases to fit the binding energy.
However, in neutron matter both operators are the same,
spreading the uncertainty band. A similar argument was
made in Ref. [37].
With the regulators used here, the Fierz-rearrangement

invariance valid at infinite cutoff is only approximate at
finite cutoff, and hence the different choices of VD and VE
can lead to different results. The different local structures
can lead to finite relative P-wave contributions. These can
be eliminated by choosing VEP , which has a projection
onto even-parity waves (predominantly S waves). The
usual nonlocal regulator in momentum space does not
couple S and P waves.
In conclusion, we find for the first time that chiral

interactions can simultaneously fit light nuclei and
low-energy P-wave n-α scattering and provide reasonable
estimates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not
provide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to describe
global properties of nuclear systems.
We also find that the ambiguities associated with con-

tact-operator choices can be significant when moving from
light nuclei to neutron matter and possibly to medium-mass
nuclei, where the T ¼ 3

2
triples play a more significant role.

The reason for the sizable impact may be the regulators
used here, which break the Fierz-rearrangement invariance,
making further investigations of regulator choices a prior-
ity. The impact of these ambiguities in the contact operators
can contribute to the uncertainties and needs to be studied
further.

FIG. 3. The energy per particle in neutron matter as a function
of density for the NN and full 3N interactions at N2LO with
R0 ¼ 1.0 fm. We use VD2 and different 3N contact structures:
The blue band corresponds to VEτ, the red band to VE1, and the
green band to VEP . The green band coincides with the NN þ 2π-
exchange-only result because both VD and VE vanish in this case.
The bands are calculated as described in the text.
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