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Virtual two-loop corrections to scattering amplitudes are a key ingredient to precision physics at collider
experiments. We compute the full set of planar master integrals relevant to five-point functions in massless
QCD, and use these to derive an analytical expression for the two-loop five-gluon all-plus-helicity
amplitude. After subtracting terms that are related to the universal infrared and ultraviolet pole structure, we
obtain a remarkably simple and compact finite remainder function, consisting only of dilogarithms.
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The precise theoretical description of scattering reactions
of elementary particles relies on the perturbation theory
expansion of the scattering amplitudes describing the
process under consideration. In this expansion, higher
perturbative orders correspond to more and more virtual
particle loops. At present, one-loop corrections can be
computed to scattering amplitudes of arbitrary multiplicity,
while two-loop corrections are known only for selected
two-to-one annihilation or two-to-two scattering processes.
For many experimental observables at higher multiplic-

ity, a substantial increase in statistical precision can be
expected from the CERN LHC in the near future.
Perturbative predictions beyond one loop will be in demand
for many precision applications of these data, for example
in improved extractions of standard model parameters or in
search for indirect signatures of new high-scale physics in
precision observables.
Progress on multiloop corrections to high-multiplicity

amplitudes requires significant advances in two directions.
Feynman-diagrammatic approaches to the computation of
these amplitudes yield enormously large expressions that
contain many thousands of different Feynman integrals.
These integrals are related among each other through
Poincaré invariance and symmetries, such that only a
limited set of independent so-called master integrals will
remain in the final answer for a scattering amplitude. To
express a generic two-loop multiparton amplitude in terms
of the relevant master integrals (ideally circumventing the
large algebraic complexity at intermediate stages that is
generated by working in terms of Feynman diagrams) is an
as yet outstanding problem. A particular example where the
reduction to a basis set of integrals was achieved [1,2] is the
two-loop five-gluon helicity amplitude with all helicities
positive. In this case, the application of on-shell techniques
led to a particularly compact integrand, which motivated a
specific choice of basis integrals (which do not necessarily
form a minimal set in the sense of being master integrals).
In [1], these integrals were evaluated numerically for
selected kinematical points. Although this specific helicity

amplitude is not contributing to the second-order correc-
tions to the three-jet cross section (due to its vanishing at
tree level), it provides an ideal testing laboratory for new
calculational concepts and methods that will carry over to
the general helicity case, as previously in the case for the
four-point two-loop amplitudes [3].
The other major challenge in the calculation of multileg

multiloop amplitudes lies in the evaluation of the master
integrals. While the full set of Feynman integrals at one
loop is known for all configurations of internal masses and
external kinematics, only specific integrals at low multi-
plicity (typically four external legs; see, however, [4,5]) are
known at two loops and beyond. In principle, these
integrals can be evaluated using purely numerical methods,
as for example iterated sector decomposition [6,7]. In
practice, these methods turn out to be too slow to allow
for an efficient evaluation of multiloop integrals when
sampling the multidimensional phase space, as required for
the evaluation of scattering cross sections.
On the other hand, analytical expressions for the inte-

grals allow us to uncover universal structures in the
amplitudes and enable the study of limiting kinematical
behavior, thereby advancing our understanding of the high-
order structure of perturbative quantum field theory. The
analytical understanding of the most basic amplitudes at a
given multiplicity and loop order is moreover an important
catalyst enabling further progress towards more compli-
cated processes at the same multiplicity. Important exam-
ples are the reconstruction of amplitudes from constraints
obtained in specific limits [8], the further development and
validation of integrand reduction techniques, and methods
for finding appropriate integral bases [9,10].
In this Letter, we make use of advances in techniques for

analytically evaluating loop integrals [10], and we compute
for the first time the full set of planar master integrals
relevant to massless two-loop five-point scattering. We
apply these integrals to the five-gluon all-plus helicity
amplitude. This is the first analytic result of a genuine
2 → 3 two-loop amplitude in QCD. We find that after
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subtraction of the universal infrared singular terms, our
analytic formula is remarkably simple. It can be written in
terms of dilogarithms, with prefactors that are well behaved
in collinear limits. This simplicity, which is reminiscent of
results inN ¼ 4 super Yang-Mills (SYM) theory, may help
to uncover new structural properties of multileg multiloop
amplitudes and lead to considerable simplifications in their
calculation.
Master integrals for two-loop five-point functions.—

Feynman integrals in dimensional regularization in
4 − 2ϵ dimensions are invariant under Poincaré transfor-
mations. By applying these transformations at the integrand
level, one obtains nontrivial linear relations among different
integrals, the integration-by-parts [11] relations. These
relations can be used to reduce the large number of
Feynman integrals relevant to a particular process to a
much smaller number of so-called master integrals. This
reduction is typically carried out using a lexicographic
ordering of the integrals [12], implemented in computer
algebra routines, for example in the codes [13] or [14].
The type of master integrals that appear in a given

process depends only on the external kinematics, and on
possible internal propagator masses. All two-loop five-
parton amplitudes relate to a common set of master
integrals: massless on-shell five-point functions at two
loops. These can be further classified into genuine five-
point functions, four-point functions with one off-shell leg,
three-point functions with up to two off-shell legs and off-
shell two-point functions. Up to the four-point level, these
functions appeared in the context of the derivation of the
two-loop amplitude for γ⋆ → 3 jets [15] and were already
computed long ago [16,17]. The genuine five-point func-
tions depend on five independent Mandelstam invariants,

v1 ¼ s12; v2 ¼ s23; v3 ¼ s34;

v4 ¼ s45; v5 ¼ s51;

where sij ¼ 2pi · pj. They are therefore considerably more
complicated than the four-point functions, since the latter
depend on three variables only. We find in total 25 new
integrals (10 planar and 15 nonplanar). The planar integrals
can be given in terms of four integral topologies, displayed
in Fig. 1. There are 3,3,2, and 2 master integrals for
topologies (a), (b), (c), and (d), respectively.
To compute the integrals, we derive differential equa-

tions for them in the vi. The system of differential equations
is then brought into a canonical form [10] by means of a
transformation of the basis of master integrals to integrals
having unit leading singularities [9]. The canonical form
we find is

d~fðvi; ϵÞ ¼ ϵ

�X
i

aid logðαiÞ
�
~fðvi; ϵÞ; ð1Þ

where ~f is the set of 61 master integrals, the differential d
comprises partial derivatives with respect to vi, and ai are

constant (kinematic and ϵ-independent) matrices. The
collection of letters αi specify the function alphabet A.
The latter is given by

�
v1; v3 þ v4; v1 − v4; v1 þ v2 − v4;Δ;

a −
ffiffiffiffi
Δ

p

aþ ffiffiffiffi
Δ

p
�
; ð2Þ

and cyclic permutations thereof. Here,

a ¼ v1v2 − v2v3 þ v3v4 − v1v5 − v4v5; ð3Þ

and the Gram determinantΔ ¼ j2pi · pjj, with 1 ≤ i; j ≤ 4.
It is interesting to note that a ¼ tr½p4p5p1p2� and Δ ¼
ðtr5Þ2, where tr5 ¼ tr½γ5p4p5p1p2�.
The full set of master integrals can be obtained by direct

integration of the differential equations, order-by-order in ϵ,
in terms of Chen iterated integrals [18]. For a practical
application of the latter to multivariable Feynman integrals,
including their numerical evaluation, see [19]. The boun-
dary conditions are determined from consistency condi-
tions, such as the absence of unphysical branch cuts. This is
particularly simple to implement in the canonical form (1)
of the differential equations; cf. [20].
Massless scattering is naturally parametrized using

momentum twistor variables [21] that solve both the on-
shell as well as the momentum conservation constraints.
We find that in these variables the alphabet (2) becomes
rational. This implies that, when expressed in terms of these
variables, the Chen iterated integrals degenerate to multiple
polylogarithms [22,23], for which efficient and precise
numerical representations exist [24]. All subtopologies at
four points and below are recomputed in this way, yielding
agreement with earlier results [16,17].
We further validate our integrals by analytically comput-

ing all five-gluon amplitudes in N ¼ 4 super Yang-Mills
theory at two loops. Their expression was initially con-
jectured in [25], tested numerically in [26], and proven in
[27] from a Ward identity for dual conformal symmetry.

(a)

(c) (d)

(b)

FIG. 1. Genuine five-point planar two-loop integrals.
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Our calculation is the first direct analytical one, and we find
complete agreement with the above references.
Technical details on the determination of the five-point

master integrals will be documented in a separate publi-
cation [28].
Result for all-plus amplitude.—We consider the unrenor-

malized all-plus five-gluon amplitude at leading color:

A5ð1þ2þ3þ4þ5þÞjleading color

¼ g3
X
L≥1

ðg2NcΓÞL

×
X

σ∈S5=Z5

trðTaσð1ÞTaσð2ÞTaσð3ÞTaσð4ÞTaσð5Þ Þ

× AðLÞ
5 ðσð1Þþσð2Þþσð3Þþσð4Þþσð5ÞþÞ: ð4Þ

Here S5=Z5 denote all noncyclic rotations of five points,
and [3]

cΓ ¼ 1

ð4πÞ2−ϵ
Γð1þ ϵÞΓ2ð1 − ϵÞ

Γð1 − 2ϵÞ : ð5Þ

Since the amplitude vanishes at tree level, it is finite at the
one-loop level [29],

Að1Þ
5 ¼ RFð1Þ

5 þOðϵÞ; ð6Þ

with R ¼ i=6=ðh12ih23ih34ih45ih51iÞ and

Fð1Þ
5 ¼ v1v2 þ v2v3 þ v3v4 þ v4v5 þ v5v1 þ tr5: ð7Þ

At two loops, the infrared and ultraviolet divergent terms
can be predicted in terms of the one-loop result. This
motivates the definition of a finite remainder Fð2Þ

5 according
to [30]

Að2Þ
5 ¼ Að1Þ

5

�
−
X5
i¼1

1

ϵ2

�
μ2

−vi

�
ϵ
�
þ RFð2Þ

5 þOðϵÞ: ð8Þ

We use the integral representation of [1] and express it in
terms of our basis of integrals. Plugging in the solution for
the ϵ-expansion of the latter, we analytically verify the
divergence structure of Eq. (8). To define the finite
remainder function, the expansion of (6) to order ϵ2 is
derived, which involves the one-loop massless pentagon
integral to this order, computed from its differential
equation. In the finite remainder, remarkably all Chen
iterated integrals of weight one, three and four cancel out.
We then express the remaining weight-two functions in
terms of dilogarithms, and find the following expression for
the finite remainder:

Fð2Þ
5 ¼ 5π2

12
Fð1Þ
5 þ

X4
i¼0

σi
�
v5tr½ð1 − γ5Þp4p5p1p2�

ðv2 þ v3 − v5Þ
I23;5

þ 1

6

tr½ð1 − γ5Þp4p5p1p2�2
v1v4

þ 10

3
v1v2 þ

2

3
v1v3

�
;

ð9Þ

where σi cyclically shifts all indices (of p, v, and I) by i,
and where

I23;5 ¼ ζ2 þ Li2

�ðv5 − v2Þðv5 − v3Þ
v2v3

�

− Li2

�
v5 − v3

v2

�
− Li2

�
v5 − v2

v3

�
: ð10Þ

Note that Eq. (9) contains both parity odd and even terms.
We remark that the trace can also be written in a natural way
using momentum twistors.
We compared our analytical result for the unrenormal-

ized two-loop amplitude (8) with the numerical values
quoted in [1] for specific phase space points in the
Euclidean region, finding full agreement. In the
Euclidean region, this expression is single-valued and real.
We note that Eq. (10) can be rewritten in a form where this
is manifest, and that our result can straightforwardly be
analytically continued to other kinematical regions.
The result above is for pure Yang-Mills theory. We

would like to mention that the full nf dependence can be
reconstructed in a simple way: the n2f terms only come from
a restricted class of diagrams, and the remaining nf terms
are fixed by supersymmetry [32].
Limits.—Scattering amplitudes have universal factoriza-

tion properties in soft and collinear limits. They serve as an
important check of our result.
We take the p4∥p5 collinear limit, without loss of

generality. In the limit, one expects (cf. Fig. 2)

Að2Þ
5 ð1þ; 2þ; 3þ; 4þ; 5þÞ !p4∥p5

Að1Þ
4 ð1þ; 2þ; 3þ; PþÞSplitP→45ð1Þð−P−; 4þ; 5þÞ
þ Að1Þ

4 ð1þ; 2þ; 3þ; P−ÞSplitP→45ð1Þð−Pþ; 4þ; 5þÞ
þ Að2Þ

5 ð1þ; 2þ; 3þ; PþÞSplitP→45ð0Þð−P−; 4þ; 5þÞ;
ð11Þ

1

2
3

4

5
1

2

3

4

5P −P

FIG. 2. Five-particle amplitude factorizing into four-point
amplitudes and splitting functions in the collinear limit.
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where “Split” are splitting amplitudes [33]. The amplitudes
appearing on the right-hand side of Eq. (11) can be found
in [32].
Taking the collinear limit of (8), we recover the structure

predicted by (11). It is interesting to note in this context that
the second line of Eq. (9) contains terms that behave as
½45�=h45i in this limit (and are amplified by 1=h45i from
the overall factor R). The latter reproduces a contribution
from the helicity-violating one-loop splitting func-
tion SplitP→45ð1Þð−Pþ; 4þ; 5þÞ.
Discussion and outlook.—The simplicity of our result

for the all-plus amplitude in QCD is reminiscent of similar
results for six-gluon amplitudes in N ¼ 4 SYM [5,34]. In
the latter case, the function alphabet is related to cluster
algebras [35], and it would be interesting to know whether
this is also true for our five-point function alphabet of
Eq. (2), or perhaps for a subset relevant for calculations up
to finite parts of amplitudes.
It is interesting to investigate possible positivity proper-

ties [36,37] of our result. This is naturally done using
momentum twistors. In QCD, the kinematics depends on
the twistors Zi (i ¼ 1;…; 5), and on an infinity twistor Y. It
is tempting to treat the latter in the same way as the loop
integration variable in the discussion of one-loop
maximally helicity violating amplitudes in [37]. This
defines a kinematical region where in particular vi > 0

and tr½ð1 − γ5Þp4p5p1p2� < 0 (and cyclic). Interestingly, in
this region, Fð1Þ

5 is positive (and the same holds for its
n-point generalization [38]). At two loops, we find that all
terms are positive, except for the terms involving I23;5,
which are negative. This can be seen by noting that
I23;5=ðv2 þ v3 − v5Þ is a one-loop one-mass box function
in six dimensions. It could be that the positivity properties
at two loops are obscured by the infrared subtraction; see
Eq. (8). However, one may speculate that the natural
building blocks of definite sign that we found above point
towards additional structure that is yet to be uncovered.
Our result for the planar master integrals provides the

maximal set of polylogarithmic functions that can appear in
a generic planar massless five-particle scattering amplitude
at two loops. Therefore we reduce the calculation of any
such scattering amplitude to the determination of the
algebraic coefficients accompanying the integral basis.
This can be envisioned using a variety of related methods
[1,39]. In the one-loop case, the knowledge of the integral
basis triggered a revolution in our ability to compute
amplitudes, and we expect the same to occur here.
We would also like to mention that our result for the

functional basis provides the foundation for bootstrap
techniques to be used, where one makes an ansatz for
the remainder function of the type

P
iciFi, where Fi are

members of the functional basis, and ci are certain
kinematic-dependent factors. See [40,41] for applications
of such a bootstrap approach to six-point amplitudes in
N ¼ 4 SYM. In the latter theory, the kinematic dependence

of the ci is related, at least conjecturally, to leading
singularities [42], simplifying the above ansatz. We antici-
pate that the basis of pentagon functions that we provide
will be useful for bootstrapping generic five-point ampli-
tudes, especially when combined with an improved under-
standing of the possible algebraic coefficients that are
allowed to appear in QCD.
An obvious next step consists in calculating the loop

integrals in the nonplanar case (the method for finding an
appropriate integral basis [10] does not rely on planarity)
and applying them to the all-plus loop integrand that was
found very recently [2].
Further generalizations include making one of the

external legs off-shell, where we anticipate Chen iterated
integrals to play an even more important role than in the
present work. This will allow us to describe processes such
as the production of Higgs boson plus jets at NNLO.
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