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We propose a new framework to represent the perturbative S matrix which is well defined for all
quantum field theories of massless particles, constructed from tree-level amplitudes and integrable term by
term. This representation is derived from the Feynman expansion through a series of partial fraction
identities, discarding terms that vanish upon integration. Loop integrands are expressed in terms of
“Q-cuts” that involve both off-shell and on-shell loop momenta, defined with a precise contour prescription
that can be evaluated by ordinary methods. This framework implies recent results found in the scattering
equation formalism at one loop, and it has a natural extension to all orders—even nonplanar theories
without well-defined forward limits or good ultraviolet behavior.
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Introduction.—Since the revolutionary developments in
quantum field theory around the middle of the last century,
Feynman diagrams have been an essential tool for comput-
ing scattering amplitudes. As represented by the Feynman
expansion, amplitudes can be determined perturbatively by
summing over all graphs with a fixed number of loops that
connect the external states by appropriate vertices and
propagators and integrating over all the internal loop
momenta. While intuitive and ultimately correct, the
Feynman expansion rapidly becomes intractable both
because the number of diagrams grows rapidly with the
number of external legs and loops, but also because
individual diagrams in many theories depend on a great
deal of purely theoretical data (such as gauge redundancies)
that have no consequences for physical predictions.
Because of this, there has long been interest in finding

formulations of perturbation theory without any explicit
reference to unphysical data. This was the principal
motivation behind the Feynman tree theorem [1], the
essence of which can be be understood (in a rather novel
way) from the well-known partial fraction identity
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When the factors 1=Di are Feynman propagators for an off-
shell loop momentum l, the terms ðDj −DiÞ become linear
in l and can therefore be interpreted as propagators
involving an on-shell momentum l. Expanding every term
in the Feynman expansion in this way, it is tempting to view
the coefficient of each 1=DiðlÞ as a lower-loop amplitude,
evaluated in the forward limit. This is precisely correct for
theories (such as those with supersymmetry) whose

amplitudes are finite in the forward limit; and this leads,
for example, to the representation found in Ref. [2] for one-
loop amplitudes in supergravity, derived within the scatter-
ing equation formalism [3]. But for most theories, however,
scattering amplitudes diverge in the forward limit, prevent-
ing any (unqualified) interpretation of the terms in this
expansion as limits of lower-loop amplitudes.
In this Letter, we present a new representation of

amplitudes which avoids this obstruction, allowing one
to write the coefficient of each off-shell propagator
1=DiðlÞ in the expansion above in terms of “Q-cuts,”
which are well defined in any theory in terms of gauge-
invariant tree amplitudes alone. In the following section, we
derive this representation in detail for one-loop amplitudes
and show how each term in this expansion can be integrated
by ordinary means. We then describe how this approach
generalizes to higher loops, illustrating the rich structure
that emerges beyond two loops.
The Q-cut representation at one loop.—For the sak e of

concreteness and clarity, let us restrict our attention to
one-loop amplitudes of theories with massless particles, so
that Feynman propagators for the loop momenta are of
the form NðlÞ=ðlþ PÞ2. The dimension of spacetime
can be arbitrary, not necessarily an integer. Both in order
to generalize the partial fraction decomposition to cases
with loop-dependent numerators, and to introduce ideas
that will prove useful later on, let us derive Eq. (1) as
an instance of Cauchy’s residue theorem. Consider
transforming l↦lþ η, where η is orthogonal to the
external momenta (Ref. [4]) satisfying η2 ¼ z so that
l2↦l2 þ z, and Di↦Di þ z for propagators involving
l. Transforming a Feynman diagram this way and dividing
by z results in
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D1ðlÞ � � �DmðlÞ

↦
1

z
Nðl; zÞ

ðD1ðlÞ þ zÞ � � � ðDmðlÞ þ zÞ : ð2Þ

After this deformation, the statement that the sum of all the
residues in z vanishes trivially reduces to Eq. (1) as a
special case.
Using this generalization of the partial fraction expan-

sion to decompose every integral of the Feynman expan-
sion, it is easy to see that every term has the form (up to a
shift in l by external momenta),

1

l2

�
NðlÞ

ð2l · P1 þQ1Þ � � � ð2l · Pm þQmÞ
�
; ð3Þ

where NðlÞ accounts for both the numerators of the
diagrams and any loop-independent propagators. Let
IðlÞ denote the factors in the square brackets above.
Although forward-limit divergences prevent us from

interpreting IðlÞ in terms of an entire tree amplitude in
general, it turns out that we can construct IðlÞ in terms of
tree-level objects up to terms that vanish upon integration.
This becomes possible after one further partial-fraction-like
expansion—this time, in the scale of l. Concretely, con-
sider the residue theorem resulting from

IðlÞ↦ ~Iðα;lÞ≡ ~IðαlÞ
ðα − 1Þ : ð4Þ

Clearly, IðlÞ is recovered as the residue of ~Iðα;lÞ at
α ¼ 1; and by Cauchy’s theorem, this is equal to (minus)
the sum of all other residues. These residues are associated
with three types of poles: at zero, at infinity, and at finite
locations (α ≠ 1). By inspection of Eq. (3), residues at
α ¼ 0 correspond to integrals of the form,Z

ddl
1

l2
~NðlÞ

Y
k

1

2l · Pk
⇒ 0; ð5Þ

where the product runs over only those factors for which
Qk ¼ 0, and ~NðlÞ denotes all other factors at α ¼ 0.
Integrals of this form must vanish upon integration in
any number of dimensions d because the denominator is
homogeneous in l and hence scale-free. Similarly, the
Laurent expansion of ~Iðα;lÞ at α → ∞ can involve only
terms homogeneous in l, which hence vanish upon
integration. Notice that these residues precisely correspond
to the terms poorly defined in the forward limit.
Therefore, we can replace IðlÞ by the sum of residues of

~Iðα;lÞ at α∉f0; 1;∞g. Importantly, all such residues can
be interpreted as involving two additional on-shell particles,
with specific momenta determined by the successive
residues. It is not hard to see that expanding every term
in the Feynman expansion in this way, the coefficient of
each pair of propagators becomes a product of complete
tree amplitudes evaluated for particular on-shell, internal
momenta (and summing over states),

ALð��� ; ~lL;− ~lRÞ
1

l2

1

ð2l ·PLþP2
LÞ
ARð ~lR;− ~lL;…Þ; ð6Þ

with ~lL ≡ αðlþ ηÞ and ~lR ≡ ~lL þ PL, with η2 ¼ −l2

and α≡ −P2
L=ð2l · PLÞ ≠ 0, and where PL denotes the

sum of momenta over a partition of external legs. We refer
to functions of the form of Eq. (6) as Q-cuts, which we can
represent graphically as follows:

ð7Þ

Notice that the shifted propagator, corresponding to the
factor 1=½ðlþ PLÞ2 − l2� in Eq. (6), is indicated by a
dashed line in the figure above to distinguish it from the
unshifted, off-shell propagator 1=l2.
We claim that the sum over all Q-cuts (with P2

L ≠ 0)
reproduces any one-loop amplitude. Notice that the inte-
grand of a Q-cut is similar to a Cutkosky unitarity cut [5].
The principal novelty involved in the Q-cut is that the
amplitudes involved are evaluated with shifted (on-shell)
values of ð ~lL; ~lRÞ, multiplied by unusual propagators.
Contours of integration.—At a fundamental level, the

causal structure of scattering amplitudes is encoded in the
Feynman iϵ prescription, critical to the precise definition of
the loop integration contour. It will be useful here to
observe that every Feynman propagator can be assigned its
own ϵ, transforming Dj↦Dj þ iϵj; so long as each ϵj is
real and positive, the physical contour will be unambiguous
(and independent of the ϵj’s).
Since Q-cuts do not involve products of Feynman

propagators, it is not immediately clear how to assign
iϵ’s to the linear poles appearing in their definition.
However, if we had started with a single Feynman integral
with specific ϵ’s for each propagator, then the partial
fraction expansion would result in terms of the form
Dij ≡ ðDi −DjÞ, with contours prescribed by shifts involv-
ing iϵij ≡ iðϵi − ϵjÞ, the signs of which will be fully
determined by the (arbitrary) ordering of the original ϵ’s.
This always provides a precise contour of integration for
the resulting expressions that is guaranteed to match the
original expression. The problem is in going in the other
direction: to assign an unambiguous prescription for the ϵ’s
associated with the linear factors in l of each Q-cut
integral (Ref. [6]).
(We should mention that the contour we describe here

requires that on-shell tree amplitudes are represented in a
way that involves only local poles. Representations of trees
generated by the BCFW recursion relations [7], for
example, involve spurious, complex poles in individual
terms. Finding a contour prescription for such terms is an
important and interesting open problem).
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It turns out that a maximally democratic contour pre-
scription will always work—meaning that it is guaranteed
to match the Feynman contour. Specifically, we may simply
average over the possible relative orderings of the ϵj’s for
the initial propagators.
It will help to clarify this contour prescription with a few

examples. Consider a single propagator linear in l, denoted
1=x. Its ϵ can be arbitrary, so we are instructed to average
over the 2! possible choices for the sign of its iϵ pre-
scription; thus, the contour prescription becomes the
principle value via the replacement

1

x
↦

1

2

�
1

xþ iϵ
þ 1

x − iϵ

�
≡ P

�
1

x

�
: ð8Þ

(Recall the possible contour prescriptions—defined by

1

x� iϵ
≡ P

�
1

x

�
∓iπδðxÞ; ð9Þ

where δðxÞ is the (nonholomorphic) Dirac δ function).
For three propagators (the case involving two linear

propagators after the partial fraction decomposition), the
result is rather less trivial: the 3! relative orderings for the
ϵ’s of the three propagators result in a more interesting
distribution of differences. It is a simple exercise to see that
the resulting contour prescription for the pair of differences
should be

1
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�
P
�
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1

3
π2δðxÞδðyÞ: ð10Þ

For four propagators (three linear ones), the prescription is
quite similar: 1=ðxyzÞ should be replaced by

P
�
1

x

�
P
�
1

y

�
P
�
1

z

�
−
1

3
π2
�
δðxÞδðyÞP

�
1

z

�
þ δðyÞδðzÞP

�
1

x

�

þ δðzÞδðxÞP
�
1

y

��
: ð11Þ

And for five or more, there will be terms involving four δ
functions for each quadruplet (times þπ4=5), etc.
One-loop examples.—To exemplify the contour prescrip-

tion, consider a simple (massive) bubble integral with two
propagators. After partial fractioning, and using the contour
prescription described above, it becomes

Z
ddl
πd=2

1

l2 þ iϵ
P
�

2

2l · pþ p2

�
: ð12Þ

To simplify the l integration, it is possible to combine the
denominators via Schwinger parameters, as usual. The
following identities, which generalize the usual distribution
formula, i=ðxþ iϵÞ⇔ R∞

0 daeiax, are useful:

P
�
2i
x

�
⇔

Z
∞

−∞
dasgnðaÞeiax; 2πδðxÞ⇔

Z
∞

−∞
daeiax:

ð13Þ

Integrating over l and an overall Schwinger parameter, the
integral (12) readily becomes

Γ
�
2 −

d
2

�Z
∞

−∞
da

sgnðaÞ
½−að1 − aÞp2 − iϵ�2−d=2 : ð14Þ

One can see that the regions a > 1 and a < 0 exactly
cancel each other, leaving the region 0 < a < 1, which
precisely reproduces the usual Feynman-parameter expres-
sion for this integral. We could similarly prove, by
exploiting cancellations in Schwinger parameter space,
that any Feynman integral is correctly reproduced by the
sum of its Q-cuts, integrated using the contour pre-
scribed above.
As a relatively simple but illustrative application, con-

sider the amplitude for incoming gluons with the same (þ)
helicity in planar Yang-Mills theory. Considering for
simplicity the contribution from a complex scalar loop,
and substituting the product of trees using the notation of
Ref. [8], the Q-cut defined in Eq. (6) becomes

� ½12�
h12i

μ2 − l2

ð2l · p1Þ
�

1

l2

½p2
12=ð2l · p12Þ�2

ð2l · p12 þ p2
12Þ

� ½34�
h34i

μ2 − l2

ð−2l · p4Þ
�
:

ð15Þ

(The full amplitude will be represented by the sum of this
Q-cut and its three cyclic rotations.) For this helicity
amplitude, an identical result would be obtained for a
gluon in the loop (Ref. [9]). Up to integrals that vanish upon
integration, the preceding is equivalent to

½12�½34�
h12ih34i

ðμ2 − l2Þ2
l2ð2l · p1Þð2l · p12 þ p2

12Þð−2l · p4Þ
: ð16Þ

In the conventional unitarity method [10,11], the two-
particle cut of this is recognized as that of a box integral
with μ4 numerator, which is then integrated. Similarly, its
single cut matches that appearing in the Feynman tree
theorem (see, e.g., Refs. [12,13]). The distinctive feature of
the present approach, however, is that each term can be
integrated directly, bypassing the reconstruction of the off-
shell integrand, and without requiring a forward-limit
interpretation of the single cut. It is also noteworthy that
apart from 1=l2, the integrand depends only on the four-
dimensional components of l.
Paying attention to the contour in Eq. (11) and applying

Schwinger parameters (13) to the linear propagators, the
d-dimensional integral over the Q-cut gives
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−i
16π2

½12�½34�
h12ih34i

Z
∞
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dadbdc½1þOðd − 4Þ�
ðbð1 − a − b − cÞsþ act − iϵÞ2−d=2

×
1

8

�
sgnðaÞsgnðbÞsgnðcÞ þ 1

3
(sgnðaÞ þ sgnðbÞ

þ sgnðcÞ)
�
;

where s≡ p2
12 and t≡ p2

23 are the usual Mandelstam
invariants. After rescaling b by jcj, the a and c integrations
both become elementary, and the b integration can be done
in the limit of d → 4. With this, we find the all-plus helicity
amplitude to be given by

−i
12 · 16π2

½12�½34�
h12ih34i

�
s

sþ t
þ st
ðsþ tÞ2 log

�
s
t

��
þ cyclic:

Notice that the logarithm nicely cancels in the sum, leaving
the correct answer (see, e.g., Ref. [8]),

A1-loopðþ;þ;þ;þÞ ¼ −
1

6

i
16π2

½12�½34�
h12ih34i : ð17Þ

Regarding extensions to higher multiplicity and higher
loops, it is worth mentioning that the Q-cut representation
can be combined with other modern techniques—for
example, integral reduction and the use of integration-
by-parts identities.
Extensions to higher loops.—To generalize the construc-

tion to two loops, we begin by writing each Feynman
diagram such that only loop momenta l1, l2 or ðl1 þ l2Þ
enter propagators. We then separately partial fraction out
the propagators of each three type. More precisely, we
introduce a three-parameter deformation li↦li þ ηi,
where η21 ¼ z1, η22 ¼ z2, and ðη1 þ η2Þ2 ¼ z3. Partial frac-
tioning then expresses the amplitude in terms of its residues
in z1, z2, z3.
In each variable zi there are residues at both finite and

infinite locations. The residues with all three zi finite are
immediately given by on-shell three-particle cuts, given by
the following Q-cut:

ð18Þ

where ~l3 ≡ ~l1 þ ~l2 þ PL and the extra-dimensional com-
ponents ~li ≡ li þ ηi are such that ~l2

i ¼ 0 for i ¼ 1; 2; 3.
The residues at infinity require more work. It is easy to see
that residues with two or three zi at infinity yield vanishing
integrals and so can be discarded. Residues with one at
infinity, say z3, represent degenerate topologies with dis-
connected loops. For these terms we repeat the procedure
introduced already at one loop and rescale li → αili and
expand by partial fractions separately in α1, α2. This yields
a second type of Q-cut:

ð19Þ

These tree amplitudes are evaluated using ~li ≡ αiðli þ ηiÞ,
with η2i ¼ −l2

i and α1;2 ≡ −P2
L;R=ð2l1;2 · PL;RÞ, similar to

the one-loop case. The amplitudes are projected onto the
0th-order term in the Laurent expansion for large η1 · η2.
Intuitively, the two Q-cuts above account for graphs

with connected and disconnected loops, with the extra-
dimensional deformation and η1 · η2 → ∞ projection
accomplishing a gauge-invariant separation between them.
According to our derivation, adding all Q-cuts (for all
possible external leg insertions) will reproduce the correct
integrated amplitude. The contour for each Q-cut is
determined by Eqs. (8)–(11), which should be applied
separately for each group of linear propagators—
that is, those involving ðA · l1 þ BÞ, ðA · l2 þ BÞ, or
½A · ðl1 þ l2Þ þ B�.
As a natural variation of the same technique, in a planar

theory one could restrict to a two-parameter deformation
with z3 ¼ 0, since no graph has more than one mixed
propagator 1=ðl1 þ l2 þ PÞ2. The residues would then be
related to the double-forward limits of trees, in theories
where this limit can be defined [14].
We believe that the Q-cut construction generalizes

straightforwardly to any loop order. For example, using
a 6 parameter deformation with all ηi · ηj taken independent
at three loops, we obtain the six Q-cut diagrams:

ð20Þ

Summary and conclusion.—The desire to represent loop
amplitudes directly in terms of lower-loop amplitudes is
motivated by the practical and conceptual advantages of
eliminating explicit reference to the redundancies required
by the Feynman-diagrammatic expansion. Recently, sev-
eral such representations of loop amplitudes in terms of
trees have appeared in the context of the scattering equation
formalism. This is in part because this formalism makes it
possible (at least for certain theories) to systematically
regulate the divergences of tree amplitudes in the forward
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limit [15–17]. But it remains an important, open problem to
systematically regulate the forward-limit divergences of
amplitudes in general theories.
In this Letter we have described a new Q-cut represen-

tation of loop amplitudes, derived from general field
theory arguments and without any reference to forward
limits. And this representation naturally extends to all
orders of perturbation theory opening new possibilities
for computation.
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