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The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum
naturally identified as its ground state. We study the expanding Universe with scalar field in the volume
time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a
nonlinear function of the cosmological constant and time. This result provides a new perspective on the
relation between time, the cosmological constant, and vacuum energy.
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One of the outstanding problems in fundamental physics
is that of the cosmological constant (CC). The problem
arises in the context of quantum field theory (QFT) on a
fixed background spacetime, which is usually taken to be
flat [1–4], or otherwise has a high degree of symmetry. The
symmetry includes a global notion of time specified as a
timelike Killing vector field. The dynamics of the gravi-
tational field is included only in so far as it is viewed as a
spin two field on the specified background; back reaction of
quantum fields on spacetime is typically excluded.
QFT on a fixed background spacetime may be viewed as

the leading order term coming from the semiclassical
approximation defined by the equation

Gab þ Λgab ¼ 8πGhψ jT̂abðϕ̂; gÞjψi; ð1Þ
where Λ is the (bare) cosmological constant. As written,
this hybrid classical-quantum equation is ambiguous. To
make it more precise we require (i) a quantization of
the matter field ϕ on a general background gab, (ii) a
suitably regularized self-adjoint operator T̂ab, and, last,
(iii) computation of the expectation value of T̂ab in some
choice of matter vacuum state jψi. This would give the
tensor

~Tψ
abðgÞ≡ hψ jT̂abðϕ̂; gÞjψi; ð2Þ

as the effective stress-energy tensor associated to the state
jψi, and hence a precise meaning for the rhs of Eq. (1). One
can then proceed to solve this equation for the “semi-
classical” metric gab.
Although there is a large amount of literature [5] on

computations of the rhs for a given spacetime, the calcu-
lation of a semiclassical metric has not been carried to
satisfactory completion, even for spacetimes with isome-
tries. In fact, the equation itself has been questioned [6].
Nevertheless, an attempt to produce a self-consistent
solution by expanding the metric and state as

gab ¼ ηab þ ϵhð1Þab þ ϵ2hð2Þ þ…;

jψi ¼ j0i þ ϵjψ ð1Þi þ ϵ2jψ ð2Þi þ…; ð3Þ
(ϵ ¼ m=mP) leads to 0th order to

Ληab ¼ 8πGh0jTabj0i: ð4Þ
This equation forms the basis of the connection between
vacuum energy density ρvac and Λ, specifically the broadly
accepted linear relationship

ρvac ¼
Λ

8πG
: ð5Þ

It leads to the cosmological constant problem via the
elementary evaluation

ρvac ¼
E
V
¼

Z
kp

0

d3k
ð2πÞ3 ðℏkÞ ¼

ℏ
8π2

k4p; ð6Þ

where kp is a Planck scale cutoff. This huge quantity is
often compared to the observed WMAP value

Λ ¼ 1.27� 0.07 × 10−56 cm−2 ð7Þ
ð∼3.2 × 10−122l−2P Þ as a significant failure of theory.
A more sophisticated argument presents this issue as a

problem coming from running scales in the theory.
Assuming a fixed background that defines energy k, the
regulated vacuum energy density computed from h0jT̂abj0i
is expected (on dimensional grounds) to be of the form

ρvac ¼ M4fðk; g1; g2;…Þ ¼ ΛðkÞ
8πGðkÞ ; ð8Þ

where f is a function of energy scale k, matter coupling
constants g1; g2;…, and some natural mass scaleMðkÞ. The
first equality comes from field theory, and the second from
semiclassical general relativity. (This expression assumes
the usual linear dependence of energy density on Λ, and is
observer four-velocity va dependent: ρ ¼ vavbh0jT̂abj0i,
unless there is a preferred timelike vector field specified by
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a spacetime isometry.) In this setting there are two ways to
state the CC problem: (i) it arises from the first equality due
to the factor M4 which gives a very large energy density
even well below the Planck energy, for example for proton
mass or ΛQCD, or (ii) it arises from the second equality as a
fine tuning problem; at low energies (1 meter to a few
astronomical units) where G and Λ are observed to be
constant, the corresponding dimensionless parameters flow
canonically as λðkÞ ¼ Λ=k2 and gðkÞ ¼ Gk2. Thus, the low
energy renormalization group trajectory must be a hyper-
bola λðkÞgðkÞ ¼ const, which reflects a fine tuning of the
initial conditions for the flow [7].
The field theory problem may be due to the fact that the

function f is usually computed in perturbation theory. A
counterpoint is provided by a recent nonperturbative
calculation in the Gross-Neveu model, which suggests
that, nonperturbatively, f is a nonanalytic function of the
coupling constant that suppresses ρvac at low energy [8].
We question the basis of formulating the CC problem to

first order in the semiclassical setting, and argue that in a
nonperturbative quantum approach in which gravitational
degrees of freedom are treated as a part of the dynamics,
either the problem does not arise, or that its manifestation is
substantially different from that coming from the usual
arguments.
We take the view that to meaningfully talk about a

vacuum, we need a physical Hamiltonian for the full
gravity-matter system. This in turn requires a global notion
of time in the context of a generally covariant theory. Hence
there is a connection between nonperturbative vacuum
energy, the cosmological constant, and a global time
variable. However, as there is no “solution to the problem
of time” in quantum gravity, one might impose a plausible
time gauge, or use some other suitably defined “relational
time.”We will use geometry degrees of freedom to fix time
gauge and derive the corresponding physical Hamiltonian.
The spectrum of the corresponding operator then gives a
formula for the vacuum energy density.
The suggestion that quantum gravity might play a role in

its resolution is not new; see, e.g., [9] in the context of
string theory, [10] in the Hamiltonian context which is
developed further here, and a semiclassical approach using
Regge calculus [11].
With this summary and context, we begin with the 3þ 1

Arnowitt-Deser-Misner (ADM) Hamiltonian for Einstein
gravity and minimally coupled to a massive scalar field

S ¼
Z

d3xdtðπab _qab þ Pϕ
_ϕ − NH − NaCaÞ; ð9Þ

where ðqab; πabÞ and ðϕ; PϕÞ are the ADM gravitational
and scalar field phase space variables, N, Na are the lapses
and shift variables, and

H ¼ 1ffiffiffi
q

p
�
πabπab −

1

2
π2
�
þ ffiffiffi

q
p ðΛ − RÞ þHϕ; ð10Þ

Ca ¼ Dbπ
b
a þ Pϕ∂aϕ; ð11Þ

Hϕ ¼ 1

2

�
P2
ϕffiffiffi
q

p þ ffiffiffi
q

p
qab∂aϕ∂bϕþ ffiffiffi

q
p

m2ϕ2

�
ð12Þ

are, respectively, the Hamiltonian and diffeomorphism
constraints, and the scalar field Hamiltonian density. (We
work in geometric units where G ¼ ℏ ¼ c ¼ 1, and
reintroduce these constants in the final result.)
From this starting point, our goal is to calculate the

vacuum energy density of the scalar field ρvacðΛ; mÞ
derived from the physical Hamiltonian associated to the
volume time gauge in a cosmological setting. We do this
first in the homogeneous (zero mode) setting to illustrate
the argument, and subsequently generalize it to include all
matter modes.
The flat homogeneous model is derived by the para-

metrization

qab ¼ a2eab; πab ¼ pa

6a
eab; ð13Þ

where eab ¼ diagð1; 1; 1Þ. Substituting this into the con-
straints and ADM action gives the reduced theory

S ¼ V0

Z
dtð _apa þ _ϕPϕ − NHÞ; ð14Þ

where

H ¼ −
p2
a

24a
þ a3Λþ 1

2

�
P2
ϕ

a3
þ a3m2ϕ2

�
: ð15Þ

The last equation is obtained from substituting the reduc-
tion ansatz into the Hamiltonain constraint (10), and V0 is
an unphysical coordinate volume. The reduced action is
invariant under the scale transformations

ðV0; a; pa;ϕ; PϕÞ →
�
λ3V0;

a
λ
;
pa

λ2
;ϕ;

Pϕ

λ3

�
: ð16Þ

At this stage we fix “physical volume time” gauge [12]
by setting

t ¼
Z

d3x
ffiffiffi
q

p ¼ V0a3: ð17Þ

We note that this is both scale invariant (16) and second
class with the Hamiltonian constraint, as required of an
adequate gauge fixing. It is also a physically natural time in
the context of an expanding cosmology. Although we do
not require it here, the lapse function corresponding to this
canonical time gauge is given by the requirement that the
gauge be preserved under evolution. This gives

1 ¼ fV0a3; NHg ¼ −
V0Napa

4
⇒ N ¼ −

4

V0apa
: ð18Þ

We note that this lapse is invariant under the transformation
(16), as it should be.
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This gauge condition, together with the solution of the
Hamiltonian constraint, eliminates the variables ða; paÞ,
leaving a theory for the scalar field variables evolving with
respect to this time. The gauge fixed canonical action is
obtained by substituting (17) and the solution of the
Hamiltonian constraint

p2
a ¼ 24

�
a4Λþ a

2

�
P2
ϕ

a3
þ a3m2ϕ2

��
jV0a3¼t

ð19Þ

into the action (14). We choose the root that gives positive
energy density.
It is useful to write the gauge fixed (GF) action using the

scale invariant variables pϕ≔V0Pϕ and t. This gives

SGF ¼
Z

dtð _ϕpϕ −HPÞ; ð20Þ

where

HP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3

�
Λþ p2

ϕ

2t2
þ 1

2
m2ϕ2

�s
: ð21Þ

The energy density derived from this Hamiltonian is

ρ ¼ HP

V0a3
¼ HP

t
; ð22Þ

since V0a3 is the physical volume (which is also the chosen
time gauge). We note that this physical quantity does not
depend on V0.
To find the eigenvalues of this density operator we recall

that for any operator Â with a positive spectrum an, the
spectrum of the square root operator

ffiffiffiffî
A

p
, is

ffiffiffiffiffi
an

p
. In our

case the argument of the square root in (21) is a shifted
harmonic oscillator with time dependent mass and fre-
quency. Therefore we can solve the eigenvalue problem for
the density operator ρ̂

ρ̂ψ ¼ ρnψ ð23Þ
by treating t as a parameter. This gives the exact spectrum

ρn ¼
m2

p

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3

�
Λþ

�
nþ 1

2

�
m
t

�s
; ð24Þ

where n ¼ 0; 1;…, and we have reintroduced the Planck
mass, with Λ, m, and t specified in Planck units.
Let us note that this energy density operator may also be

used to set up the time dependent Schrödinger equation,
specify an initial state, such as the n ¼ 0 state, and evolve it
to the present time. In general, such an evolved state may be
approximated by a finite linear combination of the instan-
taneous energy eigenbasis jψni of the density operator,

jΨðtÞi ¼
XN
n¼0

cnðtÞjψnðtÞi: ð25Þ

Now for our purpose, which is to obtain a relationship
between energy density and cosmological constant, we

would need to evaluate the expectation value of the density
operator in this state

hΨðtÞjρ̂ðtÞjΨðtÞi ¼
XN
n¼0

cnðtÞρnðtÞ: ð26Þ

However, this is not necessary to make the central point of
the Letter, as we now show.
The expression gives a nonperturbative quantum energy

density of the scalar field with respect to the volume time
gauge (17). The eigenvalue ρnðtÞ in this formula has some
interesting features: (i) it depends only on variables
invariant under the scale transformations (16), (ii) there
is a square root arising from the fact that all terms in the
Hamiltonian constraint are quadratic in momenta, (iii) the
energy density is not linear in Λ, (iv) there is a time factor
suppression which for large times gives

ρvac ≡m2
P

ffiffiffiffiffiffi
8Λ
3t2

r
; ð27Þ

independent of n.
These features are not what are expected from the usual

flat space arguments for matter vacuum energy density,
where this density is linear in Λ and time independent. The
last formula may be viewed as a prediction for the (zero
mode) quantum vacuum energy density of the scalar field
Friedmann-Robertson-Walker (FRW) Universe, since this
factor comes out of the sum (26) for late times. (We note
that at each t the state lives in the instantaneous Hilbert
space at that time, so the remaining sum adds to unity.)
A numerical estimate of ρvac using known cosmological

parameters may be computed using the measured WMAP
value for Λ in Eq. (7) and the present age of the Universe
t ¼ 1061tP, (tP ¼ Planck time). This gives

ρvac ∼ 5 × 10−129ρP ¼ 2.5 × 10−32 kg=m3; ð28Þ
where ρP ¼ mP=l3P is the Planck density. (We note that
experiments such as WMAP measure cosmological model
parameters such as Λ; implications for vacuum energy
density are then derived from theoretical models. That is,
there is no direct measurement of the energy density in a
box of empty space.)
In summary to this point, we have seen that the time

dependence in (24) has its origin in factors ofR
d3x

ffiffiffi
q

p ¼ V0a3 ¼ t; the overall factor 1=t comes from
converting the Hamiltonian scalar density (of weight one)
to a scalar, and the factor in the oscillator frequency comes
from the

ffiffiffi
q

p
terms in the matter Hamiltonian.

The semiclassical calculation of energy density is via
ρ ¼ h0jTab − Λgabj0ivavb ≡ ρϕ þ ρΛ for an observer with
four velocity va. How is this to be compared with our result
Eq. (24)? It is clear that the latter is additive in the
contributions from matter and Λ, whereas our result (24)
is not. It shows that imposing a time gauge, solving the
Hamiltonian constraint, and then diagonalizing the
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resulting physical Hamiltonian is an entirely different
process from QFT on a fixed background, and yields
substantially different results.
The setting we have discussed so far is obviously limited

without a field theory extension to include all matter
modes. This requires inclusion of inhomogeneities in the
matter and metric degrees of freedom. We now turn to this.
We will see that the main features of the energy density
formula (24)—explicit time dependence and the square root
—remain unaltered.
We follow a Hamiltonian approach similar to that

developed in [13], where the scalar field and metric
perturbations are expanded in Fourier modes, and the
Hamiltonian constraint is treated to second order in the
perturbations. The resulting theory describes the dynamics
of the gravity phase space variables ða; paÞ, and the scalar
field and metric perturbation Fourier mode pairs ðϕk; pkÞ
and ðδqkab; δπabk Þ; the mode decomposition is defined using
the global chart on homogeneous space slices:

ϕðx; tÞ ¼
X
k

ϕkðtÞeik·x;

Pϕðx; tÞ ¼
X
k

PkðtÞeik·x: ð29Þ

This gives

Hϕ ¼ V0

X
k

�
P2
k

2a3
þ ajkj2

2
ϕ2
k þ a3m2

2
ϕ2
k

�
ð30Þ

after a suitable mode relabeling. The Fourier modes so
defined satisfy the equal time Poisson bracket

fϕkðtÞ; Pk0 ðtÞg ¼ δk;k0 : ð31Þ
With this decomposition we define a Hamiltonian system
by the phase space variables ða; paÞ and ðϕk; PkÞ and
action

S ¼ V0

Z
dt

�
_apa þ

X
k

_ϕkPk − NH

�
; ð32Þ

where

H ≡ −
p2
a

24a
þ a3Λþ H̄ϕ ¼ 0; ð33Þ

with H̄ϕ ¼ Hϕ=V0 from (30). This Hamiltonian constraint
generalizes (15) to include an infinite number of degrees of
freedom.
This system is not exactly that obtained from metric and

matter perturbations in [13]; in particular, it does not
include the spatial diffeomorphism constraint, which would
impose further conditions between the matter and gravity
modes. Nevertheless, it is a consistent model that has the
main features of interest for our purpose, which is to
investigate the vacuum energy density of a matter-gravity
system with an infinite number of degrees of freedom. We

note also that the action (32) has the scaling invariance (16)
with ðϕ; PϕÞ replaced by their Fourier modes ðϕk; PkÞ.
Proceeding as for the homogeneous case, let us fix the

(scale invariant) time gauge (17) and solve the Hamiltonian
constraint to eliminate ða; paÞ. Using the scale invariant
momentum pk ≡ V0Pk, the gauge fixed action for the
matter modes is

SGF ¼
Z

dt
X
k

ð _ϕkpk −HPÞ; ð34Þ

HP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3

�
Λþ

X
k

�
p2
k

2t2
þ 1

2
ðt−ð2=3Þjk̄j2 þm2Þϕ2

k

��s
:

ð35Þ
where k̄ ¼ kV1=3

0 is the (scale invariant) wave vector. Upon
quantization the corresponding operator has the spectrum

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3

�
Λþ

X
k

�
nþ 1

2

�
ωkðtÞ

�s
; ð36Þ

ωkðtÞ ¼
1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t−

2
3k̄2 þm2

q
: ð37Þ

To find the vacuum energy density of the matter modes
we again set n ¼ 0, and consider the massless case m ¼ 0
for simplicity. The

P
k is a sum over comoving modes,

which is evaluated by converting the sum to an integral in
the usual way with a k-space volume d3k:X

k

ωk →
1

t4=3

Z
k̄p

0

d3k̄
ð2πÞ3 k̄: ð38Þ

Restoring factors of Planck mass, this gives for vacuum
energy density the result

ρvac ¼
E0

t
¼ ρP

t̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3

�
Λl2p þ

1

8π2 t̄4=3

�s
; ð39Þ

where t̄ ¼ t=tP. The overall factor is the same as that for the
homogeneous case. The peculiar time factor multiplying
the second term in the square root comes from the mode
frequency (37), which in turn has its origin in the scalar
field gradient term

ffiffiffi
q

p
qab∂aϕ∂bϕ → a3jkj2=a2.

It is apparent that the general features of the homo-
geneous case, the square root and explicit time dependence,
are still present. We may again compute a numerical
estimate for the vacuum energy density by substituting
on the rhs of (39) the present age of the Universe t̄ ¼ 1061

and the Λ value from (7). This gives

ρvac ∼ ρP × 10−103 ¼ 5 × 10−7 kg=m3: ð40Þ
This formula makes clear that the present vacuum energy
density with the global choice of volume time is far smaller
than the huge value from standard arguments. It shows that
there is no cosmological constant problem.
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Let us summarize our main result. We find for the
nonperturbative matter-gravity system in the cosmological
context that the physical Hamiltonian (i) is not a linear
function of Λ, (ii) is explicitly time dependent, and
(iii) yields the explicit formula (39) for vacuum energy
density. A numerical evaluation of this density shows that
the vacuum energy problem is absent due to the time
suppression factor. Beyond these details, our general argu-
ment reveals that there is an intimate connection between
time, vacuum energy, and the cosmological constant, which
is revealed by extracting the physical Hamiltonian for a
matter-gravity system is a physically reasonable time
gauge. (For negative cosmological constant our results
do not apply above a critical time value. This means that the
volume time gauge does not provide a useful foliation.)
In closing, we provide several comments on our

approach, pointing out what we think are generic features
and what are limitations which merit further work.
(i) In FRW cosmology the matter energy density is

identified as the right-hand side of the Friedmann equation.
This is fine for classical theory, but a nonperturbative
quantum theory requires a physical Hamiltonian for the full
matter-gravity system before one can talk about the true
vacuum.
(ii) Our approach does not address the question of why

the observed cosmological constant is so small. But it does
address the problem of the relation between vacuum energy
density and the cosmological constant; this we show is time
dependent and nonlinear.
(iii) The functional form of the physical Hamiltonian,

and hence the vacuum energy density is dependent on the
time gauge. The square root and time dependent physical
Hamiltonian are a common feature of canonical time gauge
fixing. This is because the Hamiltonian constraint is
quadratic in momenta for usual matter fields (see [14]
for an unusual exception). As a result one ends up solving
at least a quadratic equation for the momentum conjugate to
the chosen time variable.
(iv) Our results are derived in only one time gauge in the

setting of FRW cosmology with perturbations. Although
this is observationally relevant, for more general metrics it
is not possible to use volume time because it does not
provide a complete time gauge fixing. The general problem
is more challenging. It requires fixing a suitable local
matter or geometry scalar as time, and deriving the
corresponding Hamiltonian density. The latter may not
be a simple function, and the spectrum problem corre-
spondingly difficult.
(v) Beyond the homogeneous case, our development

uses the fixed volume time gauge from the background to
define the physical Hamiltonian of matter perturbations.
The spectrum of this Hamiltonian provides only the energy
part of the semiclassical equation (1). The pressures can be
computed, and would come from analyzing the spatial
diffeomorphism constraint Dbπ

ab ¼ jaðϕÞ to leading order

beyond the homogeneous approximation (where this con-
straint is trivially satisfied). This would be among the
necessary steps for developing a canonical semiclassical
approximation using our approach as a starting point.
(vi) We used a Planck scale cutoff in deriving the vacuum

energy density (39). Our justification of this is the same as
that in the usual treatment because the scalar perturbations
are effectively being treated on the FRW background. That
is, it is not yet full quantum gravity. But the novel feature in
the formula, unlike the flat space case, is the time factor
suppression of this term in (39), which leaves the Λ factor
as the dominant one at late time.
(vii) What becomes of the “low energy” CC problem in a

small patch of spacetime where there is a local timelike
Killing vector field? This local Minkowski time is obvi-
ously fine for short time scale particle physics during which
the Universe does not expand much. But our approach and
results suggest that it is not useful to pose questions such as
“does the vacuum gravitate” in a local flat patch of a
cosmological spacetime.
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