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We study the finite-shear-rate rheology of disordered solids by means of molecular dynamics
simulations in two dimensions. By systematically varying the damping strength ζ in the low-temperature
limit, we identify two well-defined flow regimes, separated by a thin (temperature-dependent) crossover
region. In the overdamped regime, the athermal rheology is governed by the competition between elastic
forces and viscous forces, whose ratio gives the Weissenberg number Wi ∝ ζ_γ; the macroscopic stress Σ
follows the frequently encountered Herschel-Bulkley law Σ ¼ Σ0 þ k

ffiffiffiffiffiffi
Wi

p
, with yield stress Σ0 > 0. In the

underdamped (inertial) regime, dramatic changes in the rheology are observed for low damping: the flow
curve becomes nonmonotonic. This change is not caused by longer-lived correlations in the particle
dynamics at lower damping; instead, for weak dissipation, the sample heats up considerably due to, and in
proportion to, the driving. By thermostating more or less underdamped systems, we are able to link
quantitatively the rheology to the kinetic temperature and the shear rate, rescaled with Einstein’s vibration
frequency.
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Inertia matters in liquid flows. Its presence in the Navier-
Stokes equations leads to a rich phenomenology that
vanishes in the overdamped limit of viscous flow.
However, the effect of damping is rarely heeded (let alone
analyzed) in the flow of disordered solids, so much so that
dense colloidal glasses often serve as model systems for
bulk metallic glasses (BMG) [1], even though they are
much more strongly damped. Here, we find that reducing
the damping can dramatically impact the macroscopic
rheology. In the inertial regime, the energy input dwells
longer in the particle momenta before its final dissipation
into the heat bath, thus facilitating plastic flow. We provide
a quantitative account of this effect in terms of simple
kinetic heating of the underdamped solid, similar to the one
observed experimentally during the operation of shear
bands in BMG [2,3].
The damping regime is not the only line of contrast

among disordered solids: atoms in BMG as well as small
colloids are heavily influenced by thermal fluctuations
whereas grains are quasiathermal; foam bubbles are
deformable whereas some colloids are close to perfect
hard spheres. Notwithstanding these contrasting features,
virtually all such solids deform similarly, i.e., mostly
elastically at small stresses while at larger shear plasticity
becomes dominant, with a succession of failures of micro-
regions, whose particles rearrange swiftly. These rearrange-
ments are triggered by the loading or facilitated by thermal
activation [4,5] and may interact via the long-range elastic
deformation that they induce in the surrounding medium

[5,6]. Based on this generic scenario, multiple simplified
rheological models have been proposed, generally focusing
on the overdamped regime [7–12] (nevertheless, the mes-
oscale elastic response has been studied across the damping
regimes [13,14]). To what extent does the presence of
inertia alter the picture?
In the quasistatic limit, i.e., at vanishing shear rates _γ,

recent numerical work by Salerno and Robbins has
ascertained that the statistics of avalanches fall into distinct
universality classes in the overdamped vs underdamped
regimes [15,16]. The difference is best illustrated by
considering the complex, rugged potential energy land-
scape (PEL) in which the system evolves: it climbs up
energy barriers in the phases of elastic loading and abruptly
slides downhill once the barrier is overcome. For over-
damped systems, this descent suffices to dissipate the
energy stored during loading, while at lower damping
the inertial force may carry the system over several
successive barriers. This process is then highly directional
in the PEL and strongly correlated in space and time, which
renders its modeling quite complex a priori. Some ad hoc
rules to include inertia in lattice-based models have been
put forward, such as lowering barriers or yield stresses for a
certain time after failure (see Ref. [17] and references in
[16]) and their impact has been emphasized, but the validity
of these descriptions stands on shaky ground.
In this Letter, we focus on the steady-state shear flow of

two-dimensional disordered solids at finite driving rates
and investigate the role of inertia in the vanishing and low
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temperature limits, with molecular dynamics (MD) simu-
lations. We apply simple shear to the binary Lennard-Jones
glass used in Ref. [14]; it comprises 32 500 large (type A)
particles and 17 500 small (type B) particles, all of mass m,
and has reduced density ρ ¼ 1.2. The equations of motion
are based on the dissipative particle dynamics (DPD)
scheme [18] and read

dri
dt

¼ vi

m
dvi
dt

¼ −
X
i≠j

∂VðrijÞ
∂rij þ f iR þ f iD: ð1Þ

Here, rij ≡ ri − rj and VðrijÞ is the interaction potential
between particles i and j. The DPD forces f iR;D involve a
cutoff function wðrÞ≡ 1 − ðr=rcÞ if r < rc ≡ 2.5σAA and 0
otherwise; f iR ≡ s

P
j≠iwðrijÞθijðrij=rijÞ is a stochastic

force, based on the Gaussian white noise θij [18] and
due to the coupling to a heat bath maintained at temperature
T0 and f iD ≡ −ζ

P
j≠iw

2ðrijÞðvij · rij=r2ijÞrij is a damping
force depending on the relative velocities vij ≡ vi − vj. The
strength s ¼ 2ζkBT0 of the coupling to the reservoir
depends on the damping strength ζ and T0, and is
maintained even if the system departs from thermal
equilibrium. In the following, ζ, m, and T0 shall be varied,
while the particle interactions are kept constant.
The equations of motion, Eqs. (1), are integrated on GPU

with the velocity Verlet algorithm. They involve forces
deriving from four types of stresses:
(i) the elastic stress, of order ΣA ≡ ϵAA=σ2AA ≡ 1,
(ii) the viscous stress, of order η_γ, where η ≈ ζ [14] is the

microscopic viscosity,
(iii) the inertial pressure, which, in a Bagnold-like

picture [19], involves momentum transfers of order
mσAA _γ at a rate ∝ _γ, and is thus proportional to m_γ2, and
(iv) the thermal pressure resulting from stochastic forces

of magnitude
ffiffiffiffiffiffiffiffi
ζT0

p
.

Their relative magnitudes are quantified by dimension-
less numbers that characterize the flow regime. In particu-
lar, the importance of viscosity with respect to elasticity is
measured by the Weissenberg number,

Wi≡ τdiss _γ with τdiss ≡ ζ

ΣA
;

and the ratio of inertial over elastic stresses is given by Ei2,
where

Ei≡ τvib _γ with τvib ≡
ffiffiffiffiffiffi
m
ΣA

r
:

In conjunction with T0, Wi and Ei fully characterize the
flow. Nevertheless, to describe the damping regime of flow
curves, irrespective of the shear rate, it is convenient to also
introduce

Q≡ Ei
Wi

¼
ffiffiffiffiffiffiffiffiffiffi
mΣA

p
ζ

¼ τdamp

τvib
with τdamp ≡m

ζ
;

if Eq. (1) is assimilated to a damped second-order harmonic
oscillator, Q is the (inertial) quality factor, i.e., the number
of inertial oscillations in the damping time.
Our numerical data confirm the relevance of such

dimensional analysis: Figures 1 and 2 prove that, at
T0 ¼ 0, the dependences of the macroscopic shear stress
Σ on ζ,m, and _γ can be condensed into a dependence on the
pair ðQ;WiÞ, or equivalently (but more conveniently when
Q ≫ 1) (Q, Ei).
Overdamped dynamics.—Let us start by investigating

the fully overdamped (Brownian or athermal) limit Q → 0.
In the absence of inertia, _γ is best rescaled as Wi. At
T0 ¼ 0, the flow curve, plotted in Fig. 1, is very well
described by the Herschel-Bulkley law

ΣðWi; T0 ¼ 0Þ ¼ 0.72þ 2
ffiffiffiffiffiffi
Wi

p
: ð2Þ

Interestingly, this description remains very good at finite
values of Q, up to Q ≈ 1. Thus, for all Q ≤ 1, the macro-
scopic rheology is exclusively governed by the competition
between elastic and viscous forces.
Leaving the athermal regime, we observe that imposing a

finite bath temperature T0 > 0 leads to a decrease of Σ at all
shear rates. Regardless of the damping regime, this thermal
effect is explained by the premature occurrence of plastic
rearrangements owing to thermal activation: the system at
T0 > 0 hops over saddle-node points in the PEL before the
effective potential barriers have completely flattened under
the influence of the driving, which interrupts the elastic
accumulation of strain, hence, the lower macroscopic
stress [20,21].
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FIG. 1. Athermal flow curves ΣðWi; T0 ¼ 0Þ in the over-
damped regime Q≲ 1, for various combinations ½ζ; m�: ½ζ ¼
1; m ¼ 1� (⋄), [10,1] (□), [10,0.1] (△), and [1,0.1] (▿). The solid
line represents Eq. (2). A flow curve at T0 ¼ 0.2,Q ¼ 1 [1,1] (⧫)
is also shown. The thin dashed line is a best fit to Eq. (3). Inset: Σ
vs _γ.
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Perhaps less expectedly, we also find a narrowing of the
overdamped regime with T0, that is, the quality factor
QcðT0Þ marking the departure from the scaling with Wi
decreases with T0 [our data suggest QcðT0 ¼ 0Þ ≈ 1
whereas QcðT0 ¼ 0.2Þ < 1 but do not allow for greater
accuracy]. On rather general grounds, this can be explained
by alluding to the excitation of higher-frequency modes at
higher temperature, these modes having larger specific
quality factors Q, or to the faster thermalization of the
system (see below).
Inertial dynamics.—On increasing Q, past a small cross-

over region around QcðT0Þ, one enters the underdamped
regime, where the rheology is a priori described by the
triplet ðQ;Ei; T0Þ. What role does the inertial quality factor
Q play in that regime?
In fact, at low damping,Q can no longer be interpreted as

the number of not-too-damped inertial oscillations within a
particle’s cage. Indeed, localized excitations spread in the
glass and, owing to nonlinearities, thermalize: their energy
is redistributed across the whole vibrational spectrum. This
process occurs over a time τth and expedites the decorre-
lation of the excitations when the velocity damping time
m=ζ becomes longer than τth. As a result, the velocity
autocorrelation functions, which reflect single-particle
dynamics, gain independence from Q, in the quiescent
system at T0 > 0 (in Fig. 1 of the Supplemental Material
[22], we observe τth ≈ 0.1τvib at T0 ¼ 0.16). Thus, one is
lured into thinking that the underdamped rheology is
insensitive to Q, in the same way as the equilibrium
properties of liquids computed with MD are independent
of the (weak) damping [18,23].
Contrary to this thought, the underdamped flow curves,

plotted in Fig. 2, exhibit dramatic changes at large Q (and
low T0), as they become nonmonotonic.
Clearly, the insensitivity to Q was a fallacy. In fact, this

parameter also controls energy dissipation in the system.

When the damping is too weak compared to the energy
input, the system heats up and strongly departs from
thermal equilibrium with the heat reservoir at T0. This is
not a numerical artifact: in experiments on sheared granular
matter, the “granular” temperature differs from room
temperature [24]; temperature rises have also been borne
out experimentally in shear bands in compressed BMG
[2,3] (incidentally, note that a negative rate dependence of
the stress, known as “rate weakening,” has also been
reported in these materials [25]). For “dry” systems, heat
is actually removed faster in simulations than in experi-
ments, where its extraction must proceed through the
boundaries [26]. Besides, nonmonotonic flow curves are
not a marginal effect of the DPD thermostat; they were also
observed by Salerno with a weak Langevin thermostat (see
Fig. 2.3 of Ref. [27]).
Taking into account the heating of the sample, we

propose to substitute, in the triplet ðQ;Ei; T0Þ, the reservoir
temperature T0 with the actual kinetic temperature of the
sample, TK ≡ ð1=2NÞPN

i¼1 mv2i . To assess the contribu-
tion T _γ of the driving to TK , we assume that the kinetic
energy is mainly generated by plastic rearrangements,
during which the elastic energy ð1=2ρÞΣ0γy per particle
is first converted into kinetic energy and then gradually
dissipated, over a time scale τdamp ≡m=ζ in the under-
damped regime. Thus, the density of simultaneous events is
m=ζ · _γ=γy, and we arrive at

T _γ ≈
�
1

2ρ
Σ0γy

�
m_γ

ζγy
≈
Σ0

2ρ
QEi:

The scaling law with QEi is in very good agreement with
the numerical data at T0 ¼ 0, as shown in Fig. 3, as long as
Q ≫ 1 (see Sec. V of Supplemental Material [22] for a
tentative rationalization of the slight deviations). The
predicted (0.29) and measured (0.15) prefactors differ by
a factor of 2 precisely, probably because the released
energy is actually equipartitioned between the kinetic
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FIG. 2. Flow curves ΣðQ;Ei; 0Þ of athermal underdamped
systems and Σ½Q0;Ei; TKðQ;EiÞ� of their thermostated counter-
parts (see text). Symbols are listed in Table I. Thin dashed
lines are the best fit to Eq. (3), Σ ¼ 0.69þ 2

ffiffiffiffiffi
Ei

p
−

0.17T2=3
K lnð0.4T5=6

K =EiÞ2=3, where TK ¼ 0.15QEi.

TABLE I. Parameters and symbols used in Figs. 2 and 3.
Inertial quality factors are denoted Q0, instead of Q, for the
thermostated systems (see text).

Q Q0 ζ m T0 Symbol

102 10−2 1 0 ∘
10 0.1 1 TKðQ ¼ 102;EiÞ +

103 10−3 1 0 □

103 10−2 100 0 •
103 3 × 10−4 0.1 0 △

1 1 1 TKðQ ¼ 103;EiÞ ▿

1 10 100 TKðQ ¼ 103;EiÞ ⋄
1 0.3 0.1 TKðQ ¼ 103;EiÞ ⬠
10 0.1 1 TKðQ ¼ 103;EiÞ ×

104 10−4 1 0 ▴

1 1 1 TKðQ ¼ 104;EiÞ *
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and elastic degrees of freedom, as for a harmonic oscillator.
Furthermore, we observe a Boltzmann distribution, para-
metrized by T _γ, of kinetic energies among the particles
(Fig. 2 of the Supplemental Material [22]), which confirms
the status of T _γ as the sample temperature. This is
consistent with the “quasiequilibrium” situation (at TK)
reported by Xu et al. in strongly sheared athermal systems
[28]. At finite T0, we expect TK ≈ T0 þ T _γ , which is
entirely compatible with our (limited) data set (Fig. 3).
Coming back to the underdamped flow curves, Fig. 2

gives ample evidence that the athermal flow curves at any
Q ≫ Qcð0Þ can be quantitatively reproduced by thermo-
stating a less underdamped (but still inertial) system, at
Q0 < Q, to the shear-rate-dependent temperature TKðQ;EiÞ
of the original system; this holds true at T0 > 0 (data at
T0 ¼ 0.2 not shown). Put differently, ΣðQ;Ei; T0Þ collap-
ses onto a master curve ~ΣðEi; TK½Q;EiÞ�, irrespective of the
value of Q. Thus, Q does not impact the underdamped
rheology as the inertial quality factor, but only via its
control of TKðQ;EiÞ. It follows that inertial vibrations and
thermal fluctuations have an analogous effect on the
rheology: both are “agitation” forces that precipitate
rearrangements, but the former increase with the shear
rate, hence the severe rate weakening observed in strongly
underdamped systems. We should mention that rate weak-
ening is generally associated with a flow instability leading
to shear banding [29,30], but here we have not seen any
banding of the velocity profiles. We believe that this is
due to the rapidity of equilibration through thermal dif-
fusion in small systems, which impedes the coexistence of
bands sheared at different rates, thus (here) at distinct
temperatures.
Chattoraj et al. [21], building on previous work by

Johnson and Samwer [20], propounded the following
formula for the temperature dependence of the stress,

Σð_γ; T0Þ ¼ Σð_γ; T0 ¼ 0Þ − AT2=3 ln

�
BT5=6

0

_γ

�2=3

; ð3Þ

where A and B are adjustable parameters. Substituting T0

with TK ¼ T0 þ 0.15QEi and _γ with Ei in Eq. (3), we
obtain predictions in broad agreement with our data, as
shown in Fig. 2, as long as the flow remains underdamped
and at low enough TK .
These results do not imply that in underdamped systems

inertia can be discarded in favor of temperature. Indeed,
the collapse onto ~Σ½Ei; TKðQ;EiÞ� breaks down for
Q < QcðT0Þ, which highlights the operativeness of an
inertial mechanism at Q > QcðT0Þ, responsible, e.g., for
the scaling of the inverse attempt frequency (multiplied by
_γ) with Ei, and not Wi. Still, it is noteworthy that the
collapse holds down to values of Q in the crossover region;
in particular, systems at Q ¼ 1 display a macroscopic
rheology close to the fully overdamped one at T0 ¼ 0,
while a scan through their higher-temperature response
gives access to the strongly underdamped rheology.
In summary, the variations of the macroscopic rheology

of a model disordered solid with damping strength ζ (or
particle mass m) can be collapsed into two flow regimes.
When Q≡ Ei=Wi is smaller than a threshold QcðT0Þ, the
system is overdamped. It is widely accepted that foams,
concentrated emulsions, and dense colloidal suspensions
belong in this regime. At fixed T0, in particular T0 ¼ 0,
the flow curves only depend on Wi, which proves that the
competition between the elastic interactions imposed by the
PEL and dissipation forces dominates the rheology of these
systems. This is compatible with the rheological models
proposed by us and others in Refs. [10,11,31,32], but rules
out all explanations based on the transverse sound velocity
cs (which affects Ei and Q, but not Wi).
Such explanatory scenarios based on cs could be valid in

the (moderately) underdamped regime, at Q≳QcðT0Þ. As
a noteworthy example, Lemaître and Caroli [33] suggested
the following scenario, later taken up and revised in
[34,35]: avalanches of plastic events spread at speed cs
and their spreading is limited by the driving, which
generates independent plastic events. The ensuing incom-
plete plastic relaxation explains the increasing flow curve.
However, the athermal MD system used in Ref. [33]
appears similar to ours with Q ≈ 0.2 < QcðT0 ¼ 0Þ.
For even more strongly underdamped systems, at

Q ≫ 102, the flow curve becomes nonmonotonic at low
bath temperature. Surprisingly, this transition has never
been analyzed before, although the threshold forQ does not
seem unrealistically large: a crude estimate for a suspension
of frictionless grains (of density ρ and radius a) in a solvent
of viscosity η gives Q ≈ ð0.1a ffiffiffiffiffiffiffiffi

ρΣ0

p
=ηÞ. We showed that

variations in the inertial properties of the material played no
role per se in the transition; instead, the latter originates
from the insufficient energy dissipation at large Q, which
causes the sample to heat up (and hence, relax stress) all the
more as the driving is fast, with the scaling law T _γ ∝ QEi.
This rate-weakening mechanism persists until it is

counterbalanced by the standard collisional increase of Σ
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T
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Q Ei

FIG. 3. Shear contribution T _γ ¼ TK − T0 to the kinetic temper-
ature measured in underdamped samples vs QEi. (▿) Data at
T0 ¼ 0.2. The line represents T _γ ¼ 0.15QEi.
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at high rates; this results in a minimum in the flow curve
(see Sec. IV of Supplemental Material [22] for a discus-
sion). The mechanism is reminiscent of the one producing a
shear-banding instability in the soft glassy rheology variant
proposed by Fielding et al. [36]. In soft glassy rheology,
material subunits possess an (widely distributed) energy
barrier for yielding, which decreases as the material is
loaded. Yielding is then activated by an effective mechani-
cal temperature x. In the variant of Ref. [36], x is coupled to
the local plastic activity and thus increases with the shear
rate. In a similar fashion, in the shear transformation zone
theory, the strain may localize via a coupling between the
strain rate and the “configurational disorder temperature”
[37]. The major conceptual divergence between these
approaches and our observations in severely underdamped
systems is the (effective or kinetic) nature of the
temperature.
This difference echoes a vast debate in the metallic glass

community regarding the origin of the softening of shear
bands: does the band persist by softening because of heat
production, hence, higher local temperatures, or, perhaps
more probably, because of local configurational changes (in
free volume or density), while the temperature rise is but a
side effect [2,3,26]? Our findings do not contribute to
settling this question, but they do certainly call for a
clarification of the description of damping in rheological
models.
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