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Critical Fragmentation Properties of Random Drilling:
How Many Holes Need to Be Drilled to Collapse a Wooden Cube?
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A solid wooden cube fragments into pieces as we sequentially drill holes through it randomly. This
seemingly straightforward observation encompasses deep and nontrivial geometrical and probabilistic
behavior that is discussed here. Combining numerical simulations and rigorous results, we find off-critical
scale-free behavior and a continuous transition at a critical density of holes that significantly differs from

classical percolation.
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The connectivity of a solid block of material strongly
depends on the density of defects. To systematically study
this dependence, one must find an experimental way to
create defects inside the solid. For example, in 2D, one can
simply punch holes in a sheet and measure the physical
properties of the remaining material. But in 3D, inducing
localized defects is not simple. One conventional solution
consists in perforating the material by drilling holes or laser
ablation from the surface [1,2].

In a tabletop experiment, we start with a solid cube of
wood and plot on each face a square-lattice mesh of L by L
cells. Initially, the cube has no holes. Sequentially, for each
one of three perpendicular faces, we randomly choose one

square cell and drill a hole having a radius of 1/v/2 cell
lengths to the other side of the cube. We repeat this process
iteratively until the entire structure collapses into small
pieces and the bottom and top part of the cube are no longer
connected. The first row of Figs. 1(a)-1(d) shows the result
of the drilling process of a real cube with edge length 6 cm
(manufactured from 2 cm thick plates of medium-density
fiberboard), where holes were drilled with a diameter of
1 cm. As the drilling proceeds, pieces get disconnected and
eventually the entire structure collapses.

Numerically, we start with a three-dimensional cubic
lattice of L sites and fix three perpendicular faces. A
fraction 1 — p square cells on each face is randomly
selected, and all sites along the line perpendicular to that
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face are removed (second row of Fig. 1). Thirty years ago,
Y. Kantor [3] numerically studied this model on lattices of
up to 10° sites and concluded that the critical fragmentation
properties of this model are in the same universality class as
random percolation [4-6]. Here, we combine rigorous
results and large-scale numerical simulations, considering
lattices 3 orders of magnitude larger in size, to show that

(@) (b) (d)

(©)

FIG. 1. Cube drilling. The upper row shows photos of the
experimental setup; the lower panels are the corresponding
numerical results. The faces of the cube are divided with a
square-lattice mesh of linear size L = 6, such that each face can
be drilled L? = 36 times. From left to right, (a)-(d), the number
of drilled holes per face are (a) 0, (b) 1, (c) 6, and (d) 8. From our
numerical results for the position of the transition in the
thermodynamic limit (see main text), one estimates that around
13 holes need to be drilled for the cube to disconnect.
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this is not the case. Removing entire rows at once induces
strong long-range directional correlations, and the critical
behavior departs from random percolation. Also remark-
ably, while in random fragmentation power-law scaling is
solely observed around the critical threshold, here we find it
in an entire off-critical region. These findings suggest that
long-range directional correlations lead to a rich spectrum
of critical phenomena which need to be understood.
Possible implications for other complex percolation models
are discussed in the conclusions.

Threshold.—The average total number of drilled holes is
3(1 — p)L?, and the asymptotic probability that a site in the
bulk is not removed is p>. We first measure the threshold p,
at which the cube collapses for different lattice sizes, up to
L = 1024, using different estimators of the transition point,
as discussed in the Supplemental Material [7]. Extra-
polating the data to the limit L — oo gives p, =
0.6339 £ 0.0005, consistent with the value estimated by
Kantor using Monte Carlo renormalization group techniques
[3] (see Supplemental Material [7]). This threshold is larger
than the two-dimensional square-lattice percolation thresh-
old (p,p) [35,36] and smaller than the cubic root of the one
for the three-dimensional simple cubic lattice [37].

Static exponents.—We consider the fraction P, of sites
in the largest cluster of connected sites [see Supplemental
Material for more data of P (p) and of other observables
[7]]. P, is the standard order parameter in percolation
identifying the transition from a disconnected to a globally
connected state. For the drilling model, the situation will
turn out to be more complicated. Figure 2(a) shows a
double-logarithmic plot of the order parameter, rescaled by
a power of the lattice size P, L”/* as a function of the
distance to the transition |p — p.|L'/*. Based on finite-size
scaling analysis [5], we find that the critical exponent of the
order parameter is = 0.52 4 0.04, and the inverse of the
correlation length exponent is 1/v=0.92+0.01 (see
Supplemental Material [7]). We note that both f and v
are different from the corresponding values for 2D and 3D
classical percolation. However, somehow surprisingly, the
exponent ratio /v = 0.50 4 0.04 is within error bars the
same as for 3D percolation. Thus, while the fractal
dimension of the largest cluster (given by d; = d — p/v)
is consistent with the one for 3D percolation, the larger
value of f# (compared to 3D percolation) implies that the
transition from the connected to the disconnected state is
less abrupt (see also Supplemental Material [7]). We
consider next the behavior of the second moment of the
cluster size distribution M’z, excluding the contribution of
the largest cluster. As shown in Fig. 2(b), the finite-size
scaling analysis gives that the susceptibility critical expo-
nentis y = 2.3 = 0.1. We note that our results for the static
critical exponents are within error bars consistent with the
scaling relation 2f + y = dv (for d = 3).

Dynamical exponents.—The transport properties of the
largest cluster at the critical threshold, p., are intimately
related to dynamical critical exponents, and they can be
measured by quantifying three sets of sites in the largest
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FIG. 2. (a) Double-logarithmic plot of the rescaled order

parameter P, L//¥ as a function of the scaling variable (p —
pe)L'/ for different lattice sizes L. The linear part has a slope of
S = 0.52 £ 0.04, consistent with /v being the same as for three-
dimensional percolation, but with a different exponent
1/v = 0.92. The present value of f is different from the two-
dimensional one = 5/36 ~ 0.139 [5,38] and the one in three
dimensions, f = 0.417 [39]. (b) Double-logarithmic plot of the
rescaled second moment M’2L‘7’/”, with y/v =2.0452, as a
function of the scaling variable |p — p(,\Ll/”, with 1/v = 0.92,
for different lattice sizes L. The solid black line is a guide to the
eye with a slope —2.3. The two sets of data correspond to the
subcritical (p < p.) and supercritical (p > p,) regions.

cluster [40]. First, we consider the so-called red sites. A site
is considered a red site if its removal would lead to the
collapse of the largest cluster [41]. The red sites form a
fractal set of fractal dimension drg = 0.92 £0.07 (see
Fig. 3), which is compatible with the inverse of the
correlation length exponent v that we obtained from the
finite-size scaling analysis in Fig. 2, dgrg = 1/v, as pre-
dicted by Coniglio for classical percolation [42]. However
the value of drg = 1/v for the drilling transition is very
different from the classical 3D percolation result 1/v =
1.1437 £ 0.0006 [39]. Figure 3 also shows that the shortest
path connecting the top and bottom sides of the largest
cluster is a fractal of fractal dimension dgp = 1.30 £ 0.05.
Finally, the backbone of the largest cluster between its
bottom and top ends is defined as the set of sites that
would carry current if a potential difference is applied
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FIG. 3. Number of sites in the backbone of the spanning cluster,

length of its shortest path (chemical distance), and red sites in the
backbone, measured at p = p. = 0.6339, as a function of the
lattice size L. Considering the local slopes of the data, we
obtain the following fractal dimensions: dgg = 2.12 + 0.08,
dsp = 1.30 £ 0.05, and dgrg = 0.92 £ 0.07. The fractal dimen-
sion of the red sites is, within error bars, compatible with the
value 1/v =~ 0.915, found from the finite size scaling behavior of
the p. estimators (see Fig. S1), and the relation dgg = 1/v [42].
Here, dgg is larger than in classical three-dimensional percola-
tion, where dgg = 1.875 &£ 0.003 [40,43,44], while dgp is smaller
than the classical value dgp = 1.3756 4 0.0006 [47]. The solid
lines are guides to the eye. To extract the fractal dimensions, we
analyzed the local slopes as proposed in Ref. [48]. Results are
averages over at least 5 x 10° samples.

between the cluster ends (also known as bi-connected
component). The backbone fractal dimension is determined
as dgg = 2.12 £ 0.08, which is larger than in classical
3D percolation, where dgg = 1.875 £ 0.003 [40,43,44].
Qualitatively, an increase in the backbone fractal dimension
is compatible with a simultaneous decrease in the shortest
path fractal dimension, since both correspond to a more
compact backbone, similar to what is observed in long-
range correlated percolation [45,46]. Thus, although the
fractal dimension of the largest cluster is similar in both
classical percolation and drilling, the internal structure of
the largest cluster is significantly different. This implies
that transport and mechanical properties of the largest
cluster follow a different scaling.

Cluster shape.—Given the highly directional nature of the
drilling process, we analyze the symmetry of the different
clusters. In particular, we consider them as rigid bodies,
consisting of occupied sites at fixed relative positions, and
look at the eigenvalues and eigenvectors of their inertia
tensors [49,50]. The numerical results show that, when
compared to classical percolation clusters, the drilling
transition clusters are more anisotropic, their orientations
being mainly aligned along the direction of the cube edges
(see Supplemental Material for quantitative details [7]).

We now give a rigorous argument for the existence of
asymmetric clusters in drilling percolation. Fix some

p € (paps Pe), Where pop~0.5927 < p. is the critical
threshold for 2D site percolation. Consider a lattice size
LyxLyxL,withLy =Ly =LandL, = e, and take a
square domain A in its base with side length
k= +/colog(L), where ¢y is a positive constant that is
smaller than —{log [p(1 — p)]}~!. Say that the event S(A)
occurred if, along the z direction, no point inside A is
drilled but all points on its boundary are. For large L, this
event happens with probability at least Lcloglr(1=p)],
Consider also two rectangles R, and R, in the (x,z) and
(v, z) planes, respectively, aligned with A. These rectangles
have base length k and height exp{c k}, where ¢, is an
arbitrary positive constant smaller than the correlation
length for two-dimensional percolation with parameter p.
The event R, (respectively, R,) indicates the existence of a
path crossing R, (respectively, R,) from bottom to top that
has not been drilled in the y (respectively, x) direction. By
our choice of ¢;, R, and R, have a positive probability
(uniformly over k); i.e., there exists a 6 > 0 such that
P(R,) > 6. In addition, if S(A) occurs, then there exists a
cluster spanning A x [0, e“1¥] from bottom to top and whose
projection into the (x,y) plane does not extend beyond A.
Thus, the probability of finding a cluster of radius k and
height ¢“¥ is bounded from below by the probability that
there exists a square A along the diagonal x = y for which
S(A) N Ry N Ry occurs, which is greater than

1 — {1 — 82Lcoloelp(1=p)I} L(colog L)/2
>1- exp[_cal/252Ll+colog [p(1=p)] 10g<L)_1/2],

which converges to unity as L increases. This shows that
one expects to have clusters extremely aligned along the z
axis, as numerically observed (see for example Fig. S15 of
the Supplemental Material [7]). In fact, the same argument
can be straightforwardly extended to explain the alignment
along the x and y directions, as also observed.

Spanning probability.—To understand the properties of
the drilling transition in terms of global connectivity, we
consider the spanning probability II(p), defined as the
probability to have at least one cluster including sites from
the top and bottom of the lattice, at a given value of the
control parameter p. Figure 4 shows the spanning proba-
bility below the threshold I(p = 0.63), for different lattice
aspect ratios. The lattice size is Ly X Ly x Lz with Ly =
Ly and L; = rLy, and the spanning probability is mea-
sured in the z direction. At the drilling transition, p = p,,
the spanning probability approaches a constant for large
lattice sizes (see Supplemental Material, Fig. S9 [7]),
similar to what is observed for classical percolation
[51,52]. By contrast, for values of p between p,p and
P, the numerical results suggest a power-law decay of the
spanning probability with L,, where the exponent increases
with the aspect ratio r. For fixed Ly, it decays exponentially
with r (see inset of Fig. 4).
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FIG. 4. Main plot: Spanning probability I, at p = 0.63 < p,,
as a function of the lattice size L, for different aspect ratios r.
Solid black lines are guides to the eye with slopes, —0.26, —0.58,
and —1.22, for r =1, 2, and 4. The inset shows the same
probability as a function of the aspect ratio r, for different fixed
lattice sizes Ly. Results are based on at least 107 samples.

It is possible to establish rigorously the off-critical
power-law decay of II(p), modifying the argument for
the existence of anisotropic clusters presented above.
Specifically, we can show that TI(p) > L;(‘g, where
0 =06(p,r) >0, for any fixed r > 0 and p € (pyp, p.)-
For that, let B be the diagonal band {(x,y); |x — Ly/2| <
anlog(Lyx/n),|x — y| < 2n} in the center of the (x, y) face
of the cube, where a and n are constants setting the length
and width, respectively. Let us say that the event 3 occurred
if B is free of holes in the (x,y) plane, i.e., if no sites in B
are drilled in the z direction. Also say that the event C
occurred if there exists a path o starting at height z = 0 and
finishing at height z = L, whose projection into the (x, y)
plane is contained in B and whose projection into the (x, z)
plane [(y,z) plane] consists of sites that have not been
drilled in the y direction (x direction). As discussed in detail
in the Supplemental Material [7], for well chosen values of
a and n, the probability of the event C is bounded from
below by a constant not depending on Ly. Furthermore, B
and C are independent events. Since their joint occurrence
implies the existence of a cluster including sites from the
bottom and the top of the lattice, we conclude that

II(p) > P[B N C] = P[B|P[C]
> exp{—c,anlog(Ly)}c3 > Lyx~?,

where c,, c3, and 0 are positive constants that depend on p.

The above argument also shows the existence of aniso-
tropic clusters, sharpening the numerical results presented
before. For p < p,p, one has II(p) ~ e~¢Lx, similarly to
what happens for uncorrelated random percolation, where
¢, also depends on p. This is due to the fact that the
projection of a path spanning the lattice into at least one of

the coordinate planes is a path that spans the corresponding
face, which has an exponentially small probability in Ly,
due to the classical exponential decay of connectivity in the
subcritical phase [53,54].

Conclusion—We find unexpected critical behavior
when sequentially drilling holes through a solid cube until
it is completely fragmented. At the critical density of drilled
holes, a continuous transition is observed in a different
universality class than the one of random percolation. We
also numerically observe off-critical scale-free behavior
that we can justify for a wide range of densities of holes
using rigorous arguments. This model is a representative of
more complex percolation models where sites are removed
in a strongly correlated manner [55-57]. Examples are
models where the set of removed sites is given by
randomized trajectories, such as the so-called Pacman
and interlacement percolation models proposed to study
the relaxation at the glass transition [58], enzyme gel
degradation [59], and corrosion [60,61], as well as perco-
lation models for distributed computation [62,63]. Other
examples are percolation models that explicitly introduce
strong directional correlations as in the removal of cylin-
ders [64] and different variants of the four-vertex model
[65]. It would be interesting to explore up to which degree
these models are in the same universality class or share
common features.

While the fractal dimension of the largest fragment is
consistent with the one of random percolation, all the
other critical exponents are different. This has practical
implications as the connectivity and transport properties
do change considerably close to the threshold of con-
nectivity. For example, we find the exponent of the order
parameter to be substantially larger than for usual perco-
lation, which implies that the drilling transition is less
abrupt. Since sites are removed along a line, it is necessary
to remove more sites to produce the same effect in the
largest fragment. We also find that, compared to usual
percolation, the fractal dimension of the backbone is
larger, and the one of the shortest path is smaller,
corresponding to a more compact backbone and therefore
enhanced conductivity properties.
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