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When an impurity interacts with a bath of phonons it forms a polaron. For increasing interaction
strengths the mass of the polaron increases and it can become self-trapped. For impurity atoms inside an
atomic Bose-Einstein condensate (BEC) the nature of this transition is not understood. While Feynman’s
variational approach to the Fröhlich model predicts a sharp transition for light impurities, renormalization
group studies always predict an extended intermediate-coupling region characterized by large phonon
correlations. To investigate this intricate regime and to test polaron physics beyond the validity of the
Fröhlich model we suggest a versatile experimental setup that allows us to tune both the mass of the
impurity and its interactions with the BEC. The impurity is realized as a dark-state polariton (DSP) inside a
quasi-two-dimensional BEC. We show that its interactions with the Bogoliubov phonons lead to photonic
polarons, described by the Bogoliubov-Fröhlich Hamiltonian, and make theoretical predictions using an
extension of a recently introduced renormalization group approach to Fröhlich polarons.
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When a mobile impurity interacts with an atomic Bose-
Einstein condensate (BEC) it forms a polaron [1–3]. These
quasiparticles were first introduced by Landau and Pekar
[4,5] when they studied the electron-phonon interaction
in polarizable crystals on the basis of the Fröhlich
Hamiltonian. One of the key predictions was the possibility
of self-trapping of the impurity in its surrounding phonon
cloud. For self-trapped impurities, the fluctuations hr2i of
the impurity position are strongly suppressed. In addition,
the polaron mass—a quantity of central interest in this
paper—becomes large. The Fröhlich Hamiltonian also
provides a good description of an impurity interacting
with a condensate, when phonon-phonon scattering is
negligible. Using Feynman’s variational approach to the
Fröhlich Hamiltonian [6], it was predicted more recently
that self-trapping can also take place for impurities in a
BEC [3]. However, the nature of the self-trapping in this
system is the subject of an ongoing debate [7].
For sufficiently light impurities, Feynman’s variational

approach to the Fröhlich Hamiltonian predicts a sharp self-
trapping transition in three dimensions [3,8], indicated by a
nonanalyticity of the polaron mass. Using more sophisti-
cated theoretical methods it has recently been claimed that,
rather than undergoing a sharp transition, the polaron mass
depends analytically on the coupling strength and there
exists an extended regime of intermediate couplings before
the impurity becomes self-trapped [9–11]. In this peculiar
regime, phonons become correlated due to phonon-phonon
interactions mediated by the impurity. Their strength is
determined not only by the impurity-phonon coupling
constant α but also by the inverse impurity mass M−1.

We show in Fig. 1 that the same is true for a quasi-
two-dimensional BEC, where Feynman’s approach predicts
a sharp transition for ratios of impurity to host-atom mass
M=m less than 0.01. Renormalization group (RG) calcu-
lations [9,11,12] in contrast always predict a smooth
crossover.
At present, only little is known about the polaron at

intermediate couplings, also because it has not yet been
realized experimentally. Understanding this regime, domi-
nated by quantum fluctuations, is of fundamental interest
and may lead to applications in material science. For
example, polaronic effects may be important in the
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FIG. 1. Ratio of the polaron massMp to the bare impurity mass
M as a function of the dimensionless coupling constant α in a
quasi-two-dimensional BEC for different ratios of impurity to
host-atom mass M=m. Feynman’s approach predicts a sharp
transition for M=m ≲ 0.01, in contrast to predictions from mean-
field (MF) theory and an extended renormalization group (RG)
approach introduced in Ref. [12].
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high-Tc cuprate superconductors [13], and intermediate
coupling physics may play a role here.
Furthermore, when phonon-phonon interactions become

relevant, the Fröhlich model is no longer sufficient to
describe the physics of a mobile impurity in a BEC. In this
regime the condensate wave function is locally deformed
and a bubble polaron can form, where the impurity is self-
trapped in a comoving mean-field potential. Although there
has been some theoretical work based on mean-field
approximations [14], Monte Carlo studies [15], self-
consistent T-matrix calculations [16], variational studies
[17,18], and perturbative analysis [19], a complete under-
standing of this regime is lacking.
Here, we propose a versatile experimental setup for

studying polarons in a BEC at intermediate couplings for
small impurity masses. The impurity is realized by coupling
the condensate to a quantized mode of the electromagnetic
field in a slow-light (or electromagnetically induced trans-
parency, EIT [20]) configuration, see Fig. 2(a). Here, the
impurity is a dark-state polariton (DSP) [21,22] with an
effective massM that can be varied by the control laser. We
show that this tuning knob can be used to study the transition
all the way from weak, through intermediate, to strong
couplings. Absorption spectroscopy allows us to directly
measure the full spectral function IðωÞ of the polaron, from
which most of its characteristics can be obtained [16,23,24].
Although we concentrate here on polarons described within
the Fröhlich model, the proposed experimental setup is also
well suited to study the impurity-BEC interaction when
there is a sizable condensate depletion. As argued in [14],
self-trapping of the impurity in the effective mean-field
potential of the deformed condensate is particularly pro-
nounced if the mass ratio of impurity to condensate atoms
becomes small, a regime easily accessible with our scheme.
Likewise, it was shown in [19] that the corrections to polaron
energy, quasiparticle weight, and polaron mass becomes
larger for smaller mass ratios. Furthermore, three-body
Efimov physics not accounted for in the Fröhlich model
may become relevant here [18].

We study a system where cavity photons are coupled to a
BEC, and the quantum nature of the light field becomes
important. More generally, systems where quantum proper-
ties both of the light and the atoms becomes important have
been studied before [25,26].
System.—We consider ultracold atoms with two internal

metastable states jgi and jsi. They are coupled by a two-
photon optical transition through a short-lived excited state
jei (decay rate γ), see Fig. 2(a). When the two-photon
detuning δ is within the EIT linewidth, the nondecaying
eigenmodes of this system are DSPs [21,22], propagating
with a group velocity vg much smaller than the vacuum
speed of light c0 [21,27].
We assume that the atoms form a BEC in the internal

ground state. Although vg ≪ c0 can become as small as a
few meters per second, it is much larger than the speed of
sound c of Bogoliubov excitations in the BEC (c is of the
order of a few mm=s). To avoid the emission of Cherenkov
radiation, we thus confine the longitudinal motion of DSPs
to a single longitudinal cavity mode with wave number k0,
see Fig. 2(b). To minimize interaction-induced losses
caused by scattering into excited motional states of atoms,
we furthermore introduce a strong longitudinal confine-
ment for the atoms, leading to a quasi-two-dimensional
(2D) BEC [28].
Now we describe how the DSPs interact with

Bogoliubov phonons. Details are presented in the
Supplemental Material [29]. The microscopic
Hamiltonian Ĥ contains the matter fields ψ̂μðrÞ, where μ ¼
g; s; e denotes the internal states and r is the transverse
coordinate. The internal states jgi and jei are coupled by a
quantized cavity field ÊðrÞ, normalized such that Ê†Ê is a
2D number density. g2D denotes the vacuum Rabi fre-
quency on the jgi − jei transition, which is reduced by a
Franck-Condon overlap due to the 2D confinement of the
atoms (see Supplemental Material [29] for details). The
transition between jei and jsi is driven by a control field of
Rabi-frequency Ωc.
For two-photon resonance, the DSP is given by

Ψ̂ðrÞ ¼ sin θψ̂ sðrÞ − cos θÊðrÞ: ð1Þ

Up to nonadiabatic corrections, the DSP is decoupled from
the bright-state polariton Φ̂ðrÞ ¼ cos θψ̂ sðrÞ þ sin θÊðrÞ
which is subject to losses. Here, tan θ ¼ g2D

ffiffiffiffiffi
n0

p
=jΩcj,

with n0 ¼ N0=L2 denoting the 2D BEC density, L being
the linear system size, and N0 the number of atoms in the
condensate.
We assume that atoms in internal states μ and ν interact

via contact interactions with strengths g2Dμν , tunable by
Feshbach resonances [34]. For our purposes it is sufficient
to use the relations to the scattering lengths aμν (in three
dimensions) valid in the infrared limit, g2Dμν ¼ ffiffiffiffiffiffi

8π
p

aμν=lz,
see Refs. [9,28]. Here, lz ≫ agg is the extent of the quasi-
two-dimensional BEC in the strongly confined region.

(a) (b)

FIG. 2. Setup for realizing tunable Fröhlich polarons of photons
in a BEC: A quasi-two-dimensional BEC of ground state atoms
(b) coupled to lasers in a Λ scheme (a). By exciting the driven
atoms using a probe field Ê, a mobile impurity (a long-lived DSP)
can be created. Its interactions with the Bogoliubov phonons lead
to polaron formation. The mass of the impurity, as well as the
polaronic coupling constant, can be tuned by changing the Rabi
frequency Ωc of the control laser.
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Using Bogoliubov theory the elementary excitations are
modeled by phonons âk. The atomic scattering as well as
the atom-light interactions give rise to couplings of the DSP
to Bogoliubov phonons. We find the corresponding
Hamiltonian to be of the Fröhlich [35] type (see the
Supplemental Material [29]), which forms the basis of
all of the following theoretical investigations (ℏ ¼ 1):

ĤF ¼
Z

d2k
�
ωkâ

†
kâk þ Ψ̂†

k

�
k2

2M
þ μ − iκcos2θ

�
Ψ̂k

�

þ
Z

d2rΨ̂†ðrÞΨ̂ðrÞ
Z

d2keik·rVkðâk þ â†−kÞ: ð2Þ

Here, nonadiabatic couplings to the bright-state polariton Φ̂
and the excited state ψ̂e were neglected, but they are
derived in the Supplemental Material [29]. The first term in
Eq. (2) describes free phonons, where the Bogoliubov
dispersion is given by ωk ¼ ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2ξ2=2

p
. ξ ¼

ð2mg2Dgg n0Þ−1=2 is the healing length. The speed of sound
reads c ¼ ðg2Dgg n0=mÞ1=2. The second term in Eq. (2)
corresponds to the dispersion relation of a free DSP. κ is
the cavity linewidth and the transverse mass M of the DSP
is determined by

M−1 ¼ cos2θM−1
ph þ sin2θm−1: ð3Þ

HereMph ¼ k0=c0 is the transverse mass of cavity photons.
The chemical potential μ is derived in the Supplemental
Material [29]. The last term in Eq. (2) describes the
impurity-phonon interaction

Vk ¼ geff

ffiffiffiffiffi
n0

p
2π

�
k2ξ2

2þ k2ξ2

�
1=4

; geff ¼ sin2θg2Dgs : ð4Þ

The Bogoliubov-Fröhlich Hamiltonian (2) is character-
ized by two dimensionless numbers [11]

α ¼ g2effn0
πc2

and
m
M

; ð5Þ

quantifying the impurity-phonon interaction and the mass
ratio of the bosons in the condensate and the impurity,
respectively. For realistic parameters [27,36] we estimate
m=Mph ≈ 1011. By changing θ, the mass ratio m=M ≈
cos2 θm=Mph can be tuned over a wide range. Typically, the
impurity is much lighter than the underlying bosons, due to
its photonic component, but in the ultra-slow-light regime
mass ratios on the order of unity should be accessible.
Phase diagram.—The following discussion of the phase

diagram is based on an extension of the renormalization
group (RG) approach to Fröhlich polarons introduced in
Refs. [9,11]. The key idea behind the earlier RG scheme is
to decouple fast and slow phonon degrees of freedom
perturbatively in every momentum shell. In Ref. [12] we

extended this approach by performing a global mean-field
(MF) shift after every RG step, corresponding to an
inclusion of infinitely many diagrams. The extended
method is not only more accurate for strong couplings,
but it is also necessary to calculate the effective polaron
mass in a regime where the impurity is light [12].
In Fig. 3 we present the full phase diagram of the 2D

Bogoliubov-Fröhlich polaron (details being discussed
below). We distinguish three different regimes of weak
coupling (where Lee-Low-Pines MF theory [37] applies),
strong coupling (where Landau and Pekar’s strong coupling
approximation applies [4,5]), and intermediate coupling
(where neither of the two approaches is accurate). They are
connected by smooth crossovers. It can be shown analyti-
cally (see Ref. [12]) that MF theory is not only asymp-
totically exact in the commonly discussed limits α → 0 and
M → ∞, but also in the limit where M → 0.
In the case of BEC polarons realized with bare atoms,

different polaron regimes can be accessed only by tuning α,
while the mass ratio is fixed around a value between∼0.1 to
∼10. For the photonic setup, on the other hand, the impurity
mass M can be used as a tuning parameter. In particular,
extremely light impurities can easily be created and regimes
of the phase diagram inaccessible to bare atoms can be
addressed. This versatility makes the photonic setup
superior to purely atomic systems, for the investigation
of the transition from weak through intermediate couplings.
Now we turn to a more detailed discussion of how the

phase diagram in Fig. 3 was obtained from the extended
RG approach [12]. We expect that in the suggested
experimental setup our calculations can be put to a test.
In Fig. 1 we show an example of how the effective polaron
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FIG. 3. Full phase diagram of the two-dimension Bogoliubov-
Fröhlich model: For sufficiently light impurities and large enough
α, an extended regime of intermediate couplings is found (as a
guide to the eye, the dashed line indicates where the crossover
takes place). The color plot shows the exponent κ of the power
law Mp=M − 1 ∼ ακ, determined from the slope of curves as in
Fig. 1. Parameters used in the RG simulations were Λ0 ¼ 2000=ξ
and P ¼ 0.01Mc (for their definition, see Ref. [12]). We also
plotted the maximum values αmax below which the Fröhlich
model is valid, for η ¼ 1, 10 as defined in the text
(dash-dotted lines).
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mass depends on α, for a light impurity (M=m ¼ 0.01). As
found previously using the perturbative RG [9,10], a
smooth crossover takes place from a quasifree polaron
to a self-trapped polaron. For small couplings, Mp
increases linearly with α according to the MF prediction
and crosses over into the intermediate coupling regime with
a nonlinear growth, MpðαÞ=M − 1 ∼ ακ. Eventually the
strong-coupling regime is entered where Mp increases
linearly with α again, but with a different slope. We
determined the exponent κðαÞ (defined as the slope of
the double-logarithmic curves in Fig. 1) to distinguish the
different regimes in the phase diagram in Fig. 3.
Experimental considerations.—DSPs in ultracold BECs

have been observed experimentally in the slow-light limit
[27,38]. By performing similar experiments in quasi-two-
dimensional BECs [28] with light confined to a cavity, see
Fig. 2, photonic Fröhlich polarons can be realized. By
varying the intensity of the control laser Ωc, the effective
mass of the DSP can be tuned, and using Feshbach
resonances [34] the coupling strength α can be varied.
This should allow us to explore the phase diagram shown in
Fig. 3. Realistic experimental parameters are provided in
the Supplemental Material [29].
Next, we discuss conditions when the Fröhlich

Hamiltonian (2) is valid. In the derivation of the model
[9,11] we neglected phonon-phonon scattering induced by
the impurity, which is justified when ϵ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nph=n0

p
≪ 1.

Here, nph denotes the (real-space) phonon density [2,9]
which we estimate by nph ≈ Nph=ξ2. The phonon number
(at zero total momentum P ¼ 0) can be calculated from
MF theory and the condition ϵ ≪ 1 becomes
ϵ ¼ jgeff jðm=

ffiffiffi
π

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm=M þmÞp
≪ 1. Demanding an

upper bound ϵ < ϵmax thus constrains jgeff j, which yields
an upper bound for the coupling strength,

αmax ¼
ϵ2max

g2Dgg

�
1

m
þ 1

M

�
¼ ϵ2maxffiffiffiffiffiffi

8π
p lz

agg

�
1þ m

M

�
: ð6Þ

To estimate which range of parameters in the Fröhlich
polaron phase diagram can be accessed in an experiment,
we plotted αmax for η ¼ ðϵ2max=

ffiffiffiffiffiffi
8π

p Þðlz=aggÞ ¼ 1 and 10 in
Fig. 3. One recognizes that the validity of the Fröhlich
model for BECs extends into the intermediate coupling
regime, while going to strong coupling may require us to go
beyond the Fröhlich model. Ultimately, experiments need
to clarify how the system behaves at intermediate cou-
plings, and we believe that the proposed setup is well suited
to explore this.
Experimental signatures.—We proceed by discussing

possible signatures of polaron formation. In order to create
a DSP polaron, one can envision first storing a weak probe
pulse, ideally containing a single or a few photons, in the
BEC using the storage protocol of [39,40] and sub-
sequently restoring an intracavity DSP with a small
photonic component, i.e., 0 < cos2 θ ≪ 1. Most strikingly,

the effective mass of the polaronMp significantly increases
as compared to the bare mass M, see Fig. 1. One way to
measure this effect is to observe dipole oscillations [41] of a
polaron wave packet inside a harmonic potential Mω2

0r
2=2

seen by the DSP. The weak harmonic confinement with an
oscillator length l ¼ ðMpω0Þ−1=2 ≫ ξ can easily be imple-
mented using spherical cavity mirrors.
Amore powerful method for analyzing photonic polarons

is absorption spectroscopy upon driving the cavity by an
external laser at a frequency ω and with the momentum P,
i.e., with an amplitude E ∼ E0eiP·r−iωt. The absorption rate Γ
of photons from the laser is given by the spectral function
Iðω;PÞ, Γðω;PÞ ∼ Iðω;PÞ, in complete analogy to the
radio-frequency spectroscopy discussed, e.g., in Ref. [24].
The momentum-resolved spectral function of the pho-

tonic polaron has a characteristic delta-function peak
Icohðω;PÞ ¼ Zδ(ω − E0ðPÞ), which is located at the
polaron energy ω ¼ E0ðPÞ. By measuring the momentum
dependence of the polaron energy (around P ¼ 0) the
polaron mass can be obtained. Using the sum ruleR
dωIðω;PÞ ¼ 1, also the quasiparticle residue Z can be

obtained from the spectral function.
Another option is to investigate the Bose system directly

and observe the polaron’s phonon cloud. This can be done,
for example, by measuring correlations in time-of-flight
experiments [10]. Using Bragg spectroscopy, the spatial
structures of the polaron cloud could be studied.
Summary.—In this article we suggested a realistic

experimental setup for exploring the polaron formation
of mobile impurities inside a BEC. By coupling the atoms
to lasers in a slow-light setting, we showed that DSP
impurities with a tunable mass can be realized. Their
interaction with the Bogoliubov phonons of a BEC can
be modeled by a Fröhlich Hamiltonian. One of the main
motivations to study this system is to explore the self-
trapping transition experimentally, with the impurity mass
serving as a flexible tuning parameter. The physics of this
transition, dominated by phonon correlations, is poorly
understood. The theoretical analysis presented suggests a
smooth crossover rather than a sharp phase transition as
may be expected from Feynman’s variational approach [3].
Ultimately, experiments are needed to clarify how the
polaron becomes self-trapped.
The suggested setup furthermore raises new questions,

including how the polaron properties change in a regime
where the Fröhlich Hamiltonian is no longer valid
[15,16,19]. There, the formation of bubble polarons [14]
as well as interesting few-body physics [17,18] may be
expected. Although the validity of the theoretical analysis
presented here is questionable in this parameter range, the
ability to tune both the coupling strength α and the impurity
mass M at will makes our system appealing to the search
for new physical effects.
Finally, in solid-state systems polarons have almost

exclusively been studied under equilibrium conditions.
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Ultracold quantum gases provide long coherence times and
allow us to study dynamical effects. This includes the
possibility to measure the full spectral function [23,24],
which is possible in our system using absorption spectros-
copy. Also, the dynamics of polaron formation can be
studied in real time in the suggested experiments. The use
of photons coupled to short-lived atomic states, moreover,
opens the possibility of studying polarons in driven-
dissipative systems far from equilibrium.
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