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We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit
without requiring single-particle-resolved state detection. We show that the “one-axis twisting” interaction,
well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an
entanglement-enhanced interferometer to facilitate readout. Applying this interaction-based readout to
oversqueezed, non-Gaussian states yields a Heisenberg scaling in phase sensitivity, which persists in the
presence of detection noise as large as the quantum projection noise of an unentangled ensemble. Even in
dissipative implementations—e.g., employing light-mediated interactions in an optical cavity or Rydberg
dressing—the method significantly relaxes the detection resolution required for spectroscopy beyond the

standard quantum limit.
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For decades, advances in atomic spectroscopy have
brought clocks, accelerometers, and magnetometers to ever
greater precision. A recent development is the use of many-
particle entangled states to reduce the statistical uncertainty
in measurements of the energy difference 7z between two
atomic states [1),]]) [1-10]. Whereas an uncorrelated
ensemble of N two-level atoms achieves at best the
standard quantum limit of precision AwT = 1/+/N in an
interrogation time 7, entanglement can enhance this
precision up to the fundamental Heisenberg limit
AwT = 1/N. Approaching the Heisenberg limit with more
than a few particles remains a major outstanding challenge,
due to difficulties not only of preparing but also of
detecting entangled quantum states [11-13].

Imperfect state detection has limited the sensitivity of
entanglement-enhanced metrology with squeezed [1-8],
oversqueezed [9], and twin Fock [10] states. The standard
detection protocol is to measure the population difference
n=n; —n, between the levels [1),[]) in the entangled
state after perturbing it by an amount proportional to the
frequency w, with dn/dw = NT. Any uncertainty An in the
population measurement limits the attainable spectroscopic
sensitivity to AwT > An/N. Correspondingly, approaching
the Heisenberg limit requires single-particle-resolved state
detection, which becomes increasingly difficult at large
atom number. Recent experiments have made progress in
addressing this challenge [11,12] but not yet under the
conditions required to generate highly entangled states.

Theoretically, a quantum-enhanced measurement does
not require directly detecting the entangled sensor state.
Several proposals instead envision echo protocols [14—16]
in which a quantum system undergoes a unitary evolution
U into a nonclassical state and, after subjecting this state to
a perturbation, one attempts to reverse the evolution to
the initial state by application of UT. This approach in
principle permits Heisenberg-limited measurements with an
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ensemble of spin-1/2 particles (or, equivalently, two-level
atoms) by detecting the state of a single ancilla spin [16].

In this Letter, we propose an echo protocol that enables
spectroscopy near the Heisenberg limit with low-resolution
state detection An ~ \/N To generate entanglement, our
method employs the global Ising interactions of the “one-
axis twisting” Hamiltonian [17], realizable with cold atoms
[4,5,18-22], trapped ions [23-25], and solid-state nuclear
spins [26]. Switching the sign of the interaction after
subjecting the system to a weak perturbation amplifies
the perturbation into a larger spin rotation that is easily
detected. We analyze the performance including dissipation
in two atomic implementations, employing interactions
mediated either by light in an optical cavity [19,21] or by
Rydberg dressing [27]. In each case, the twisting echo
enables precision far beyond the standard quantum limit
with detection noise larger than the quantum noise of an
unentangled state.

The one-axis twisting Hamiltonian H iy = xS°
describes internal-state-dependent interactions in a collec-
tion of N two-level atoms, which we represent in terms
of spin-1/2 operators s; by a collective spin S = > ¥, s;.
The dynamical effect of H,,;, is to generate a spin
precession about the Z axis at a rate proportional to S,
[Fig. 1(a) to Fig. 1(b)]. For spins initially polarized along X,
the lowest-order effect of H,; is squeezing [17]. At longer
interaction time, H; produces non-Gaussian states,
including oversqueezed states and ultimately a maximally
entangled GHZ state at yr = z/2 [24]. While the GHZ state
enables Heisenberg-limited measurements in few-particle
systems with highly coherent interactions, we will show
that the twisting echo protocol attains a Heisenberg scaling
AwT « 1/N at significantly shorter evolution time.

The squeezed and oversqueezed states generated
by H,y are highly sensitive to spin rotations R (¢) =
e~y about the ¥ axis. Indicative of this sensitivity are the
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FIG. 1. Twisting echo for entanglement-enhanced measure-
ment. Top row: initial CSS |X) (a) evolves under H;y(y) into an
oversqueezed state |y,) (b). To detect a rotation of |y,) about §
by a small angle ¢ [(b) to (c)], we amplify the perturbation into a
large displacement (S?) = GS¢ by applying Hix(—y) [(c) to
(d)]. Hlustrated are Wigner quasiprobability distributions for
28 = 30 atoms, with ¢ = 1/S. Bottom row: illustration of the
same steps, with blue flow lines indicating twisting and
untwisting.

increased quantum fluctuations AS, in Fig. 1(b), which
lower the quantum Cramér-Rao bound on the uncertainty
A¢ > 1/(2AS,) [28]. We therefore present a protocol for
measuring R,(¢), bearing in mind that a compound
sequence R, (¢) = R, (—=7/2)R (¢)R(n/2) then allows
for measuring a precession ¢p = wT about Z, much as in
Ramsey spectroscopy with squeezed states [1-5].

The twisting echo protocol is shown in Fig. 1, where
we assume unitary dynamics. An ensemble is initialized
in the coherent spin state (CSS) |X) satisfying S,|X) =
S|%) [Fig. 1(a)]. Applying H s (y) = xS? for a time t
yields the entangled state |y,) = U|R), where U = =5
[Fig. 1(b)]. To detect a rotation |y,) = R,(¢)|w,) by a
small angle ¢, we attempt to undo the twisting by
applying Hyi(—y). For ¢ =0, the final state
U'R,(#)U|R) is identical to the original CSS.
However, a nonzero angle ¢ [Fig. 1(c)] biases the
S,-dependent spin precession to produce a large final
value of (S,) [Fig. 1(d)]. Measuring S, by rotating the
state and then detecting the population difference ny —n,
provides a sensitive estimate of ¢.

The angular sensitivity is given by

Ag = [AST/0,(ST)], o (1)

where (S?) and AS? represent the mean and standard
deviation of S, after the echo, and 0, =d/d¢.
The standard deviation for no rotation is ideally that of

the initial CSS, AS?™" = AScss = 1/S/2. To evaluate the
denominator of Eq. (1), we expand

(S7) = (R|UTe S US, Ut S V%)
ip(X[[S,. UTS,U]I%) + O(?) (2)

to lowest order in ¢. We express S, = (S, —S_)/(2i) in
terms of raising and lowering operators S, and simplify

UTS U = e %51 S 115t = § gxi(£25:+1) (3)

to evaluate Eq. (2) using the generating functions in
Ref. [29]. We thus arrive at a dependence

[0,(S)],_ = S(28 = 1) sin <2QS) cos?S-2 (ZQS> ()

of the final spin orientation on the perturbation ¢, where
we have introduced the “twisting strength” Q = 2Syt.
The resulting metrological gain 1/[N(A¢)?] is plotted in
Fig. 2(a) as a function of Q for N = 10° atoms. At the
optimal twisting strength Q, = 2Sarccot(v2S —2) =
VN for N> 1, the echo protocol yields an angular
sensitivity

APyin = \/E/N (5)

This sensitivity is very near the Heisenberg limit, despite a
~+/N-times shorter twisting evolution Qopt than required to
reach a GHZ state [Qgpy in Fig. 2(a)]. The entangled state
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FIG. 2. Metrological gain of the twisting echo with N = 103
atoms. Horizontal lines indicate standard quantum limit (black)
and Heisenberg limit (red). (a) Metrological gain vs twisting
strength Q for the unitary twisting echo (solid blue), compared to
spin squeezing (dot-dashed green) and the quantum Cramér-Rao
bound (QCRB) on phase sensitivity (dashed orange). The twist-
ing echo nearly follows the QCRB to its plateau at Q =~ /N only
at a much longer time Qgyz = Nx/2 does the QCRB increase by
3 dB to reach the Heisenberg limit. (b) Metrological gain vs
measurement uncertainty An for echo with twisting strength Q
(solid blue) or O, (dotted blue), compared to direct detection of
the squeezed state at Qg (dot-dashed green). Dashed orange
curve shows Cramér-Rao bound for estimating ¢ in the GHZ state
Ry(¢)(I§) + | = §)) using projective measurements with uncer-
tainty An.
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ly.) at Quy is oversqueezed [Fig. 1(b)], allowing the echo
to surpass the sensitivity A¢ o 1/N>/® attainable by spin
squeezing [17] under H ;-

The twisting echo is highly robust against detection
noise [Fig. 2(b)], as the “untwisting” amplifies the spin
rotation signal by a factor of G = d(S?)/d(S¢) < /N
[Fig. 1(c) to Fig. 1(d)]. Concomitantly, the quantum noise
returns to the CSS level, so that adding Gaussian detection
noise ASc.s = PAScss results in an angular sensitivity

Ap = /1 + p*A¢pyn. Thus, even a measurement that
barely resolves a CSS, with atom number resolution
An = 2AS,..s ® VN, permits a sensitivity near the
Heisenberg limit. By contrast, measurement noise signifi-
cantly degrades the sensitivity attainable by direct detection
of non-Gaussian states: already at single-atom resolution,
the twisting echo outperforms direct detection of a GHZ
state [Fig. 2(b)].

In practice, the sensitivity A¢ may be degraded by
imperfect coherence of the one-axis twisting evolution. To
show that the twisting echo can provide a significant benefit
in realistic metrological scenarios, we analyze the limita-
tions due to dissipation in two implementations designed to
enhance atomic clocks: the method of cavity feedback
dynamics [19] demonstrated in Refs. [2,20], and the
Rydberg dressing scheme proposed in Ref. [27].

Cavity-mediated interactions.—The scheme for one-axis
twisting by light-mediated interactions [19-21] is shown in
Fig. 3(a). Atoms in hyperfine states |1), || ) are coupled to
an optical resonator mode with vacuum Rabi frequency 2g,
at large detunings +A from transitions to an excited
state |e). The dispersive atom-light interaction shifts the
cavity resonance frequency in proportion to S, with
Ow,|0S, = ®k/2, where ® = 4¢*>/Ak. Thus, driving the
cavity at a detuning J. from the bare-cavity resonance
results in an §,-dependent intracavity power. The latter acts
back on the atomic levels via the ac Stark shift, yielding an
S,-dependent spin precession. For small cavity shifts
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FIG. 3. Experimental schemes for entanglement-enhanced
measurement. (a) Optical cavity with drive laser at detuning
dc from cavity resonance w, and detunings +A from atomic
transitions [1) — |e), |{) — |e). (b) Optical-lattice clock with
metastable state |1) coupled to a Rydberg state |R) by a laser with
Rabi frequency Q, producing the two-body potential V(r) [27].
Both schemes yield one-axis twisting dynamics, with the sign of
H,,; dictated by the sign of 6. (df) in the cavity-QED (Rydberg)
system.

VN®k < 8¢, the spin precession rate depends linearly
on S, yielding one-axis twisting dynamics. The sign of the
twisting is controlled by &, while the strength depends on
the average number of photons p in the coherent field
incident on the cavity: Q = 2Sp®>d/(1 + d*)?, where
d=25q/x.

The light-induced twisting is accompanied by fluctua-
tions in the phase of the collective spin due to photon shot
noise. These fluctuations are described by a Lindblad
operator L = /yS_ in the master equation for the density
matrix of the spin subsystem, where y =2y/d [30].
Physically, yt represents the average number of photons
rescattered into the cavity per atom while twisting.
The leakage of these photons from the cavity in principle
enables a measurement of §,, whose backaction is the

dephasing described by a decay in ((S?77°)%) =
e ((STO9=9)2)  after twisting and  untwisting.
Accordingly, to lowest order in yt < 1, for N > 1, the
variance of S, grows to

(AS?™°)2/AScss® & 1 + 48yt = 1 +4Q/d.  (6)

Thus, cavity decay increases A¢ by a factor /1 +4Q/d
compared with the unitary case.

The phase broadening can be made arbitrarily small at
large detuning 6. at the price of increased decoherence
from spontaneous emission. The latter occurs at a rate
I = y(1/d + d)/(25) per atom, where n = 4¢*/(xT") is
the single-atom cooperativity and I' is the excited-state
linewidth. Assuming each spontaneous emission event has
a probability r of flipping a spin, the average value of S,
while “untwisting” differs from that during “twisting” by a

root mean square value [19] AS = \/4rSTt/3 =
\/rQ(1/d+ d)/(3n). Such a change has the same effect
on the final signal as a perturbation A¢, = AS®/S, and
thus contributes to the uncertainty in measuring ¢.

To calculate the phase sensitivity of the dissipative
echo, we first express the normalized phase variance
03 = 2S(A¢)3 for the unitary case in terms of the twisting

strength Q. From Eq. (4), using the approxi-
mation cos?5~2(yt) ~ e SU)* for yt < 1, we obtain o3
¢2"/29 /0% The total phase variance including cavity
decay and spontaneous emission is then given by

0’ =2S(A¢p)? = 63 + o5, where

o2 742129 /(Qd) +2rQ(d~" +d)/(3Sy)  (7)

represents the noise added by dissipation. This noise will
reduce the optimal twisting strength below Q. = V28, so
that ¢2/(5) ~ 1. The dissipative contribution 62, is then

minimized by choosing Qd ~ /6Sy/r and large detuning
d > 1, yielding a total variance
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FIG. 4. Dissipative twisting echo. (a) Cavity-mediated twisting,
with r = 1/2. (i) Metrological gain —101log;, 6° vs laser-cavity
detuning d = 25-/x for N =10° atoms and cooperativity
n=0.1 (blue), 1 (orange), 10 (green). (ii) Metrological gain
vs N and 7. (b) Rydberg-mediated twisting in Sr for n = 70,
2a = 800 nm, ¢ = 0.1. (i) Limitations on the detuning &, which
must lie below the blue line for all atoms to fit inside the
interaction sphere but above the dotted orange line to avoid
spontaneous emission. (ii) Metrological gain vs N in Rydberg
scheme limited by spontaneous emission (orange), compared to
idealized case without spontaneous emission (dashed blue) and
cavity-mediated twisting with 7 = 10 (dotted green). Orange
band represents a range of C4 coefficients 100 < Cy < 10!
calculated for principal quantum numbers 60 < n < 70 [32].

o2~ r(1+ d)/(65n) +\/32r(1 + 1/a®)/(3Sn).  (8)

At large collective cooperativity 2S5y > 1, the normalized
phase variance o> depends only weakly on detuning
[Fig. 4(a.i)] for 1 «<d< +/Sn/r, where we obtain

0? ~ 03 ~ \/32r/(3Sn). We plot the metrological gain
672 as a function of N and 5 in Fig. 4(a.ii).

The scaling of the metrological gain with collective
cooperativity is just as in spin squeezing by quantum
nondemolition measurement [33], but no coherence-
preserving measurement is required. Moreover, the meas-
urement only requires a resolution on the order of the width
ASf > AScgg of the broadened final state. The benefits of
the echo for state detection can be combined with schemes
for reducing dissipation [13,34,35] to achieve even higher
sensitivity.

Rydberg dressing.—To approach the ideal unitary echo,
we consider implementing H,;; by Rydberg dressing
[Fig. 3(b)] in a strontium optical-lattice clock [27]. Here,
the pseudospin states are the singlet ground state ||) =
|'Sy) and metastable triplet state |1) = |*Py). A laser with
Rabi frequency Q is detuned by & from the |1) — |R)
transition, where |R) = |n>S,) represents a Rydberg state
of principal quantum number n. The coupling to |R)
induces a two-body potential V(r) that is nearly constant

over a distance L = 1[Cs/(265)]"/® [Fig. 3(b)], enabling
all-to-all interactions among N atoms confined within a
region of diameter L. In the limit of weak dressing, where
the probability e = N Tﬂz /(45x?) for even a single one of
the N4 ~ N/2 spin-up atoms to be excited to |R) is small
(e < 1), the result is a one-axis twisting Hamiltonian with
interaction strength y = Q*/(165,°) [27]. The sign of the
interaction is controlled by the detuning 6z, while the
strength |y| = €2Cg/(2°N?L) is highest for small, dense
ensembles.

Obtaining maximally coherent all-to-all interactions
requires careful choice of the detuning from the Rydberg
state. The detuning 6z controls both the interaction range L
and the ratio y/I'y. «x 6 between the spin-spin coupling
and the spontaneous emission rate I',, = ¢I'/N per atom,
where I' is the Rydberg state linewidth. To fit all atoms
inside a sphere of diameter L in a three-dimensional lattice
with spacing a, we must restrict the detuning to
6g <T'Cs/(2°N?), where Cq = Cq/(Ta®). To conserva-
tively estimate the metrological gain attainable under this
restriction, without modeling the effects of decay to other
Rydberg states, we restrict the twisting-untwisting evolu-
tion to the first spontaneous emission event: 2NT ¢ < 1.
Reaching the optimum oversqueezed state at Q,, then

requires a detuning 6z > I'N*/2/(2¢). Both conditions on
Og, plotted in Fig. 4(b.i), can be met simultaneously for up
to N, = (Cee/2%)%7 atoms. Here, Cg ~ 10'! for a Rydberg
state of principal quantum number n ~ 70 [32] in a lattice
of the “magic” wavelength 2a ~ 800 nm for the clock
transition [36]. At a Rydberg-state population ¢ = 0.1, the
ideal phase sensitivity of Eq. (5) can then be reached with
up to N =~ 150 atoms.

We compare the predicted performance of the Rydberg
and cavity schemes in Fig. 4(b.ii). For low atom number,
the Rydberg dressing outperforms cavity-mediated inter-
actions even at strong coupling n ~ 10. Yet whereas the
cavity echo improves monotonically with N, the Rydberg
echo reaches an optimum at the critical atom number N,
above which the coherent evolution time must be reduced
to extend the interaction range. Even with only N =~ 150
atoms, the twisting echo matches the phase sensitivity of
~10* unentangled atoms. The method could thus benefit
atomic clocks employing asynchronous interrogation of
many small subensembles [37,38].

We have presented a protocol that amplifies the effect of
a phase rotation on an entangled state to enhance signal
readout. By transferring the phase information to the
average displacement of a near-Gaussian state, the twisting
echo attains a Heisenberg scaling in sensitivity without
single-particle resolution, and eliminates the need for
Bayesian estimation methods for non-Gaussian states.
Our approach can guide the design of new experiments
by alleviating the need to simultaneously optimize coher-
ence of interactions and fidelity of state detection. The
protocol is adaptable to a wide range of systems, including
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ones where the sign of the interaction is fixed. For example,
spin rotations can convert one-axis twisting to a two-axis
counter-twisting Hamiltonian H, o $2 — 2 [39] and can
switch the sign of H, to exchange the squeezed and
amplified quadratures. Future work might explore exten-
sions to richer many-body systems featuring finite-range
interactions or chaotic dynamics.
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