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A phase modulation puts the atom in a coherent superposition of quantum states with different kinetic
energies. We have detected the interference of such modulated waves at the output of our atom
interferometer, and we have observed beats at the difference of the modulation frequencies and its
harmonics, in good agreement with theory. The phase modulations were produced by a Kerr phase
modulator, i.e., by the propagation of the atom wave in a time-dependent electric field. An extension of this
technique to electron interferometry should open the way to very high temporal resolution in electron
microscopy.
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Wave beating is ubiquitous in physics [1]: It was
discovered with acoustic waves and extended to electro-
magnetic waves, from radio frequencies to the laser
domain. The extension to matter waves is feasible and
requires the production of coherent superposition of quan-
tum states of different kinetic energies. In the present
Letter, we describe an atom-wave phase modulator, which
is the perfect atom-optics analogue of the Kerr modulator
for light waves [2], and we use it to modulate the waves
propagating in the arms of an atom interferometer. We
observe beats of atom waves, at the modulation frequencies
and at its harmonics or, if we use two different frequencies,
at the frequency difference and its harmonics. We thus
achieve heterodyne experiments with matter waves.
The first use of a Kerr modulator for atom waves is due

to Roberts et al. [3] in order to produce a tailored velocity
dependence phase shift. This technique was extended to
measure the mean velocity of an atomic beam [4].
However, in both experiments, no temporal modulation
of the interferometer signal was detected.
A Kerr modulator can produce coherent sidebands to any

atom wave, and this should open numerous possibilities. As
the analogy with light waves is enlightening, let us briefly
recall the history of beats with light waves: Around 1880,
Righi produced phase modulations and beats thanks to
rotating polarizing elements [5]; in 1955, Forrester,
Gudmundsen, and Johnson observed beats of incoherent
light sources [6]; in 1962, beats of independent laser beams
were observed [7,8] and this technique is the basis of very
accurate heterodyne measurements of laser frequencies,
particularly since the development of the frequency comb
[9]. Obviously, this analogy should not be pushed too far
because of important differences between light and atom
waves, discussed at the end of this Letter.
Coherent superpositions of quantum states of different

kinetic energies have already been produced, either with
neutrons or with atoms, using a large variety of techniques:
reflection of the wave on a vibrating mirror [10–13],

transmission by a moving or intensity-modulated grating
[14–17], Zeeman interaction with a time-dependent mag-
netic field [18–20], and atom-laser emitting on two or
several modes [21,22]. If the modulation frequency ω is
larger than δEkin=ℏ (δEkin is the width of the kinetic energy
distribution), the modulation may be detected by observing
resolved sidebands in the energy spectrum, while, in the
opposite case, the only possible detection is the observation
of temporal beats: Our experiment belongs to this last case.
Diffraction is the general technique to produce coherent

superposition of quantum states [23]: An incident plane
wave jki;Ωii (ℏki is the momentum, ℏΩi the energy)
interacts with a perturbation periodic in space and time, of
wave vector κ and angular frequency ω. This inter-
action can transfer p quanta of momentum ℏκ and energy
ℏω, thus producing a superposition of plane waves
jki þ pκ;Ωi þ pωi. If the perturbation is periodic in time
only, this is a diffraction-in-time process [24], and the
transmitted wave is given by

jΨti ¼
X
p

Apjkp;Ωpi; ð1Þ

with Ωp ¼ Ωi þ pω, p being the diffraction order. jkpj is
given by energy conservation, jkpj ≈ jkij þ pmω=ðℏjkijÞ,
valid if pω ≪ Ωi, m being the particle mass.
The theory of a phase modulator is the same for light or

matter waves, the main difference being due to the
propagation delays which are very different, in their order
of magnitude and dispersion. We simplify the calculation
by considering a 1D geometry, with a plane wave propa-
gating along the z axis through a time-dependent refractive
index nðz; tÞ. Assuming that jnðz; tÞ − 1j ≪ 1, the induced
phase shift φmðtdÞ is given by

φmðtdÞ ¼ ki

Z
½nðz; td − τÞ − 1�dz; ð2Þ
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where td is the time at which the wave reaches the detector
located in zd, τ is the propagation delay, τ ¼ ðzd − zÞ=v,
and v is the wave group velocity equal, for an atom, to its
classical velocity. If the refractive index nðz; tÞ − 1 ¼
εm cos ðωtÞ extends over a length L centered at zc, we get

φmðtdÞ ¼ φmax cos ½ωðtd − τcÞ� ð3Þ
with

φmax ¼ εmki

�
2v
ω

sin

�
ωL
2v

��
and τc ¼

zd − zc
v

; ð4Þ

where the expression between the square brackets takes
into account the variation of the refractive index during the
interaction time L=v. If this time is negligible, ωL=2v ≪ 1,
then φmax → εmkiL. Using the Jacobi-Anger expansion
[25] of exp ½iφmðtdÞ�, the transmitted wave function at zd is
described by Eq. (1) with Ap equal to

Ap ¼ JpðφmaxÞ exp
�
ip

�
π

2
− ψmðpÞ

��
; ð5Þ

where Jp is the Bessel function of the first kind of order p
and ψmðpÞ ¼ pωτc is the phase shift due to the propaga-
tion delay.
The time-dependent refractive index nðz; tÞ is produced

by an electric field Eðz; tÞ which polarizes the atom and
induces a Stark energy shift [26,27]:

nðz; tÞ − 1 ¼ 2πε0α

mv2
E2ðz; tÞ; ð6Þ

where α is the static electric polarizability, provided that the
modulation frequencies are negligible with respect to the
first atom resonance frequency. This effect is the matter-
wave analogue of the Kerr effect for light [2].
Nowadays, most phase modulators for light waves use

the Pockels effect which is linear in an electric field [28].
Such a linear effect is negligibly small for matter waves,
because parity and time reversal are almost exact sym-
metries [29]. Finally, for atoms in an S ground state, the
polarizability α and, as a consequence, the index of
refraction are almost independent of the Zeeman-hyperfine
sublevel [30,31].
To detect phase modulations, we use our lithium Mach-

Zehnder interferometer described in detail in Ref. [32] and
schematically represented in Fig. 1. The lithium atomic
beam produced by supersonic expansion of lithium seeded
in argon has a Gaussian velocity distribution with a mean
velocity vm ≈ 1050 m=s and a 24% FWHM, corresponding
to a mean de Broglie wavelength λdB ≈ 54 pm and kinetic
energy, expressed in frequency units, Ωi=ð2πÞ ≈ 9 THz.
The signal is measured by a Langmuir-Taylor detector [33],
with a response time due to the surface ionization process
on the order of 0.12–0.3 ms (see [34] for more details): This

response time is poorly known, in particular because it
varies very rapidly with the surface temperature. The time
resolution is further limited by the counting period equal to
1 ms. The interferometer signal is given by

IðtdÞ ¼ I0f1þ V0 cos ½φd þ ΔφmðtdÞ�g; ð7Þ

where I0 is the mean signal intensity and V0 the fringe
visibility. φd is a phase due to atom diffraction, and it is
used to scan the interference fringes. This phase is
independent of the atom velocity.
We apply different phase modulations to the two

interferometer arms (A,B), and the resulting phase shift
is given by the difference: ΔφmðtdÞ ¼ φm;AðtdÞ − φm;BðtdÞ.
With the help of the double capacitor, shown in Fig. 1, we
apply oscillating electric fields to both interferometer arms.
Using Eqs. (2) and (6) and setting VA ¼ V0 þ V1 cos ðωtÞ
and VB ¼ −V0 þ V1 cos ðωtÞ, where V0 is a voltage offset,
we get

ΔφmðtdÞ ¼ 4KðωÞV0V1 cos ½ωðtd − τcÞ�; ð8Þ

with KðωÞ ≈ 4.79 × 10−4 rad=V2 for small ω. We achieve
a maximum value Δφmax ∼ 15 rad for V0 ¼ 800 V and
V1 ¼ 10 V [34].
Figure 2 presents the interferometer signal as a function

of time in the presence of a low modulation frequency,
ω=ð2πÞ ¼ 21 Hz, and the signal exhibits clearly the con-
tributions of the first two harmonics. The Fourier transform

FIG. 1. Schematic drawing of our atom interferometer (not to
scale). The atomic beam collimated by two slits is diffracted by
three quasiresonant laser standing waves produced by reflecting
laser beams on three mirrors. Two output atomic beams carry
complementary interference signals. A slit selects one of these
beams whose intensity is measured by a Langmuir-Taylor surface
ionization detector. The interferometer arms labeled A and B are
represented by full (green) lines, and the diffraction angle,
∼160 μrad, has been grossly exaggerated. Lower part: Detailed
view of the interaction region, with the interferometer arms going
through two capacitors which share a common grounded elec-
trode. The length of the capacitor is L ≈ 48 mm, and the distance
from their center to the detector is zd − zc ¼ 1423� 10 mm.

PRL 116, 053004 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

5 FEBRUARY 2016

053004-2



of this signal also reveals the presence of the third and
fourth harmonics.
We have collected many similar signals with different

values of the modulation amplitude Δφmax. We record
interference fringes by slowly scanning the phase φd. We
apply half of the time the modulated phase ΔφmðtÞ ¼
Δφmax cos ðωtÞ, while no phase modulation is present for
the other half.
To analyze the interferometer signal IðtdÞ, we calculate

its Fourier transform Iðω0Þ ¼ R
T
0 IðtdÞ exp ð−iω0tdÞdtd=T,

where T is the record duration. We thus get the amplitude
IðpωÞ of the modulation at the pth harmonics of the
modulation frequency ω:

IðpωÞ
I0

¼δp;0þVðpÞexp ½−iψmðpÞ�cos
�
φdþp

π

2

�
; ð9Þ

where δp;0 is the Kronecker delta. [IðpωÞ is plotted as a
function of the diffraction phase φd in Supplemental
Material [34]]. From such plots, we extract the visibility
VðpÞ and the phase ψmðpÞ of the pth harmonic. Thanks to
Eq. (5), these two quantities are given by VðpÞ=V0 ¼
JpðΔφmaxÞ and ψmðpÞ ¼ pωτc. Before comparison with
experiments, the theoretical interferometer signal must be
averaged over the velocity distribution, with Δφmax and τc
being both functions of the velocity: Δφmax ∝ v−1 if
ωL=2v ≪ 1 and τc is the sum of the propagation time ∝
v−1 and of a smaller, velocity-independent, contribution
due to the ionization process (more details in Supplemental
Material [34]).

Figure 3 presents the results of a series of experiments
with different values of the maximum modulation phase
Δφmax and two different modulation frequencies. The
modulation amplitude VðpÞ=V0 of harmonic p varies with
the modulation phase amplitude Δφmax, with a Bessel-like
behavior while the phase shift ψmðpÞ is a linear function of
the harmonic order p for a given frequency and it also
increases linearly with the modulation frequency ω. All
these results are in good agreement with our theoretical
model (see [34], Chap. II).
We have also made experiments with the two arms

modulated with different frequencies ωA=ð2πÞ and
ωB=ð2πÞ, and we detect the beat at the frequency difference
ðωA − ωBÞ=ð2πÞ and its harmonics: This is a heterodyne
experiment with matter waves. We choose ωA=ð2πÞ and
ωB=ð2πÞ in the 5–30 kHz range, where no modulation can
be detected because of the detector response time. We may
note that, even with a fast detector, the dispersion of the
delay around its mean value τc ≈ 1.65 ms would prevent
the detection of these modulations. We have kept the
frequency difference equal to 13 Hz while varying the
two frequencies, and we have observed the beat and its
first harmonics on the interferometer signal. The theory of
heterodyne modulations is given in Supplemental Material
[34]. We have analyzed the modulated signal as in the
previous case. Figure 4 presents the modulation ampli-
tude VðpÞ=V0 of the interferometer signal for the first
harmonics of the frequency difference as a function of
ωA=ð2πÞ. The experimental data agree reasonably well with

FIG. 2. The interferometer signal in the presence of a phase
Δφmax ∼ 2.7 rad oscillating at a frequency ω=ð2πÞ ¼ 21 Hz. The
diffraction phase φd ≈ −0.5 rad has been chosen to induce a
strong non-linearity. Top panel: direct recording of the interfer-
ometer signal equal to the number of atoms detected per
millisecond. Bottom panel: the modulus of the Fourier transform
of a 16.4-s-long record reveals the presence of the first four
harmonics.

FIG. 3. Measurement of the fringe visibility and the phase shift
of the harmonics of the modulation frequency equal to 11 or
21 Hz. Upper panel: VðpÞ=V0 as a function of Δφmax for p ¼ 0
(squares), 1 (bullets), and 6 (stars); the curves are our theoretical
results, with no free parameters. Lower panel: Phase shift
ψmðpÞ ¼ pωτc as a function of the harmonic order p for two
modulation frequencies ω=ð2πÞ ¼ 11 and 43 Hz. The total delay
τc deduced from these experiments is τc ≈ 1.65� 0.01 ms: It is
the sum of the atom propagation time, estimated near 1.36 ms,
and of the delay due to the ionization process. From the measured
τc value, we deduce an ionization delay near 0.29 ms.
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the theoretical results (see Supplemental Material [34])
which include averaging over the velocity distribution.
Finally, we have also used our setup to apply phase

modulation of atom waves to an educational purpose,
transmitting sound and image. The experimental protocol
and results are detailed in Supplemental Material [34].
In the present study, we have used a Kerr phase

modulator for atom waves. The electric field varies peri-
odically in time, which creates a diffraction-of-time process
for atom waves. This phase modulation is detected with an
atom interferometer. With only one modulation frequency,
the atom interferometer signal presents oscillations at this
frequency and its harmonics: The phase shift, due to the
propagation delay from modulator to detector, agrees with
the value calculated using the atom-wave group velocity.
With two different modulation frequencies applied on the
interferometer arms, the signal exhibits beats at the fre-
quency difference and its harmonics. The observed
modulations are due to the production of a coherent
superposition of different kinetic energy states and this
superposition is robust, although the modulation frequen-
cies, up to 30 kHz, represent an extremely small fraction of
the atom kinetic energy equal to 9 THz when expressed in
frequency units. The modulations of the signal are due to
the nonlinear character of quantum measurement (signal
proportional to the modulus square of the wave function):
This is particularly obvious for the beat frequency, as the
atoms never interact with a perturbation oscillating at the
beat frequency. The modulation frequencies were presently
limited below ∼50 kHz by the dispersion of the interaction
time. A very short capacitor, with a length L ∼ 1 mm,
would reduce the interaction time by a factor of 50 and
increase the frequency limit by the same factor. To further

reduce the interaction time, the best way is to use the
dynamical Stark effect by a laser beam strongly focused on
one interferometer arm: With a laser waist diameter
∼50 μm and an atom velocity ∼1000 m=s, the interaction
time would be ∼50 ns, allowing modulation frequencies up
to 10 MHz.
In the introduction, we have recalled the impressive

development of beats with light waves. A direct extension
to atom waves is not straightforward because of two
important differences between light and atom waves:
(i) Vacuum being dispersive for atom waves, propagation
will wash out fast modulations except if the source has a
very narrow velocity distribution, and (ii) the response time
of the atom detector, which must be smaller than the beat
period, is limited by the time spent in the detection volume.
These two difficulties may be solved by using charged

particles, in particular, electrons, for which extremely
narrow velocity distributions can be achieved and very
fast detectors are available. We propose to use the tech-
niques described in the present Letter with an electron
holographic microscope [43]: As such, a microscope is a
separated arm interferometer; an electric potential applied
on arm A and oscillating at the frequency ωA will induce a
modulated phase φAðtÞ, while arm B will be modulated by
interaction with a sample excited by a perturbation
UðtÞ ¼ U0 cos ðωBtÞ. In the linear response approximation,
the modification of refractive index δns of the sample for
the electron wave also oscillates at the same frequency:

δnsðtÞ ¼ αðωBÞ cos ½ωBtþ ψðωBÞ�; ð10Þ

where the amplitude αðωBÞ and the phase shift ψðωBÞ
describe the response of the sample to the perturbation.
δnsðtÞ induces a phase shift φBðtÞ ¼ kieδnsðtÞ, where ki is
the electron wave vector and e is the sample thickness. The
interference signal, calculated in Supplemental Material
[see Eqs. (7)–(10) [34]], will exhibit modulations at the
difference frequency ðωA − ωBÞ: This heterodyne effect
enables one to transfer the interesting signal at the differ-
ence frequency, which may be very low. The interferometer
phase ψðωBÞ is the response to a time-dependent pertur-
bation of the sample in the frequency domain which is
related to the time domain by Fourier transform. In fact, our
proposal is analogous to the phase-shift technique [44,45]
classically used to measure lifetimes of atomic or molecular
excited states, and a great advantage of the phase-shift
technique is that the measured lifetime can be considerably
shorter than the modulation period. The extension of phase-
shift techniques to electron holography should make it
possible to measure the response of the sample with very
high spatial and temporal resolutions.
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FIG. 4. Beats of matter waves: The quantity VðpÞ=V0 measured
on the modulation at the pth harmonics of ðωA − ωBÞ=ð2πÞ ¼
13 Hz is plotted as a function of the frequency ωA=ð2πÞ in
kilohertz. The symbols represent our measurements, while the
full lines represent the theoretical results, taking into account the
velocity distribution. The value of φmax is ≈6.7 rad.
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