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We revisit the mα6ðm=MÞ order corrections to the hyperfine splitting in the Hþ
2 ion and find a hitherto

unrecognized second-order relativistic contribution associated with the vibrational motion of the nuclei.
Inclusion of this correction term produces theoretical predictions which are in excellent agreement with
experimental data [K. B. Jefferts, Phys. Rev. Lett. 23, 1476 (1969)], thereby concluding a nearly 50-year-
long theoretical quest to explain the experimental results within their 1-ppm error. The agreement between
the theory and experiment corroborates the proton structural properties as derived from the hyperfine
structure of atomic hydrogen. Our work furthermore indicates that, for future improvements, a full three-
body evaluation of the mα6ðm=MÞ correction term will be mandatory.
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One of the key properties of Hþ
2 , the simplest molecule in

nature, is the frequency of its hyperfine transitions, which
include the molecular counterparts to the well-known
21-cm line in atomic hydrogen. Thirty of these hyperfine
transitions were investigated back in 1969 in a pioneering
radio-frequency (rf) spectroscopy experiment [1] with an
accuracy of 1.5 kHz (or 1 ppm). Indirect information was
later obtained, with lower accuracy, from the analysis of
Rydberg states spectra in H2 [2,3]. Many theoretical efforts
have since been devoted to explaining the hyperfine
structure (hfs) of Hþ

2 . First calculations within the adiabatic
approximation (see, e.g., [4,5]) were in disagreement with
experiments by slightly less than 1 MHz. The inclusion of
nonadiabatic corrections [6] and a full three-body calcu-
lation of the leading-order hyperfine Hamiltonian [7]
allowed us to reduce the discrepancy by about one order
of magnitude. Recently, the theory was further improved by
including relativistic corrections of the order ofmα6ðm=MÞ
[8], but a discrepancy of ∼10 kHz between the theoretical
and experimental spin-flip transition frequencies still
remained unexplained.
This situation may be considered discomforting for three

main reasons. First, Hþ
2 serves as a benchmark system for

high-accuracy theoretical models. Any unexplained dis-
crepancy between the theory and experiment may point at
possible issues with the theory (in this case, relativistic
quantum mechanics and quantum electrodynamics), the
experiment, or both. Second, Hþ

2 is assumed to play a

key role in the formation of trihydrogen molecular ions in
space, which are the seed of many interstellar chemical
reaction chains [9]. In contrast to Hþ

3 , interstellar H
þ
2 has

remained elusive, and its detection is one of the outstanding
challenges in radio astronomy [4,10–13]. A possible future
radio-astronomical detection ofHþ

2 hyperfine emission lines
will likely trigger subsequent modeling of the cloud dynam-
ics based on Doppler velocity profiles. This process (and
even the identification of the hyperfine lines themselves)
may be hampered by the above-mentioned hyperfine fre-
quency discrepancy, which could be mistaken for a large
Doppler shift v=c ∼ 10−5. Third, there exists a possibility
that the discrepancy could be at least partly explained by a
significant deviation of the proton’s structural parameters
(Zemach radius and polarizability) from their current values,
similar to the smaller electric charge radius observed in
muonic hydrogen [14]. Resolving the discrepancy is there-
fore of importance to a broad physics community.
In this Letter, we point out a hitherto unrecognized

deficiency in the evaluation of the relativistic correction to
the mα6ðm=MÞ contribution, which we solve ad hoc by the
inclusion of vibrational excitations within this correction
term. With this correction included, our calculations are in
excellent agreement with the experimental data, for the first
time within the experimental error, thereby concluding a
theoretical quest which lasted for nearly half a century (see,
for example, [15] and references therein). Furthermore, the
agreement between the theory and experiment at the
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kilohertz level corroborates the proton nuclear properties
derived from the experimentally measured hfs of atomic
hydrogen [16]. At the same time, our findings suggest that
the current theoretical framework should be extended with
a rigorous treatment of the entire mα6ðm=MÞ relativistic
correction in the three-body framework in order to achieve
higher precision in the future.
Our theoretical treatment of the Hþ

2 hyperfine structure
starts out from the nonrelativistic Hamiltonian of a three-
body system, which may be written as follows (atomic units
are used throughout):

H ¼ −
1

2μ
∇2

r1 −
1

2μ
∇2

r2 −
1

me
∇r1 ·∇r2 −

Z
r1

−
Z
r2

þ Z2

r12
;

ð1Þ

where r1 and r2 are position vectors of the electron with
respect to protons labeled 1 and 2, r12 ¼ r2 − r1 is a vector
determining the relative position of the two protons, Z ¼ 1
is the nuclear charge, and μ ¼ meMp=ðme þMpÞ is the
reduced mass given the electron mass me and proton
mass Mp.
The hyperfine interaction, which determines the splitting

between various spin configuration sublevels within the
same rovibrational state in the Hþ

2 ion, is described by the
effective Hamiltonian [7]
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×
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Following the notation of Ref. [7], I is the total nuclear
spin, and L is the total orbital momentum. The coupling
scheme of angular momenta is F ¼ Iþ se, J ¼ Lþ F. A
schematic diagram indicating the hyperfine splitting
between the states with rotational angular momentum
quantum number L ¼ 1 is shown in Fig. 1.
The major coupling is the spin-spin electron-proton

interaction [first term in Eq. (2)] which determines the
principal splitting between F ¼ 1=2 and F ¼ 3=2 states of
∼1.2–1.4 GHz. Thus, the main contribution to the theo-
retical uncertainty of the spin-flip transition frequencies
stems from uncertainty of the coefficient bF. In what
follows, we will concentrate on calculations of this quan-
tity. The coefficients ce, cI , d1, and d2 of the Hamiltonian
(2) were obtained in Ref. [7] with sufficient accuracy to
explain the smaller splitting of the F ¼ 1=2 and F ¼ 3=2
multiplets within the experimental uncertainty.

In Ref. [8], the following QED contributions to bF were
taken into consideration: ðZαÞ2EF [17], αðZαÞEF [18,19],
and αðZαÞ2 ln2ðZαÞEF [20], as well as the proton finite-size
corrections: Zemach [21,22], pure recoil [23], and nuclear
polarizability [24] contributions (see also [16,25] for more
details).

EF ¼ 16

3
α2μp

me

Mp

�
1þ me

Mp

�
−3

is the Fermi energy for the hyperfine splitting in atomic
hydrogen (H) [26,27], with μp the magnetic moment of the
proton in nuclear magnetons. The work of Ref. [8] allowed
us to reduce the discrepancy with measured spin-flip
transitions ðF ¼ 3=2Þ → ðF ¼ 1=2Þ by one order of mag-
nitude in comparison with the Breit-Pauli Hamiltonian
approximation of Ref. [7], down to about 10 kHz. Here, we
revisit the ðZαÞ2EF contribution. The other QED contri-
butions considered in Ref. [8] are proportional to the
electronic wave function density jΨð0Þj2 at the location
of each nucleus and were obtained with sufficient precision.
We evaluate the interactions of the order of ðZαÞ2EF

within the framework of nonrelativistic quantum electro-
dynamics (NRQED) [27]. The NRQED spin-spin inter-
action at this order has two terms, which contribute to the
hyperfine splitting. The first one is the effective
Hamiltonian [see [8], Eq. (43)]:

ΔEB ¼ hHð6Þ
s i;

Hð6Þ
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and the other is the second-order contribution:

FIG. 1. Hyperfine structure of Hþ
2 in a given vibrational

quantum state v and with orbital angular momentum quantum
number L ¼ 1. Angular momentum quantum labels F and J are
shown within parentheses.
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ΔEA ¼ 2α4hHBjQðE0 −HÞ−1QjHssi; ð4Þ

where

HB ¼ −
p4
e

8m3
e
þ Z
2m2

e
π½δðr1Þ þ δðr2Þ�;

Hss ¼
8π

3me
se½μ1δðr1Þ þ μ2δðr2Þ�; ð5Þ

with μa ¼ ðμp=MpÞIa for a ¼ 1, 2. In Ref. [8], the
ðZαÞ2EF correction was evaluated within the adiabatic
approximation; i.e., it was computed for the two-Coulomb-
center problem for a grid of values of the internuclear
distance r12 to obtain an ”effective” potential curve, which
was then averaged over the vibrational motion of heavy
particles in the molecule. The HamiltonianH in the second-
order term was thus approximated by the two-center
Hamiltonian H0:

H0 ¼
p2
e

2me
−
Z
r1

−
Z
r2
; ð6Þ

where r1 and r2 are distances from clamped proton 1 and 2
to the electron, respectively. The major deficiency of the
adiabatic approach is that, for the second-order term, only
the electron excitations are taken into consideration,
whereas vibrational excitations are ignored. To solve this,
we explicitly incorporate the vibrational excitations in our
analysis by adding a third contribution:

ΔEC ¼ 2α4
�X

v0≠v

hvLjHBjv0Lihv0LjHssjvLi
Ev − Ev0

þ
Z

∞

E1S

hvLjHBjELihELjHssjvLi
Ev − E

dE

�
: ð7Þ

The first and second terms correspond, respectively, to a
summation over bound and continuum vibrational states
within the ground electronic state only, and E1S stands for
the energy of the dissociation limit of the 1sσg electronic
ground state of Hþ

2 . For the contribution from excited σg
electronic states, we keep the result of the adiabatic
calculation performed in Ref. [8], thereby ignoring the
vibrational excitations associated with these states. The
underlying assumption is that the correlation with vibra-
tional states in excited electronic states is negligible due to
the large energy difference and small overlap of these
vibrational wave functions with those in the 1sσg state.
Both bound and continuum wave functions of the Hþ

2

molecular ion are required for a numerical evaluation of
Eq. (7). For bound rovibrational states of gerade symmetry,
we use the variational method described in [28]. To get
proper solutions for all L ¼ 1 states up to the last vibra-
tional state v ¼ 19, basis sets with N ¼ 2000 functions for

the states of v ¼ 0;…; 12 and N ¼ 3000 functions for the
states of v ¼ 13;…; 19 are used. This approach enables us
to obtain the nonrelativistic energies for these states
(Ev, E0

v) with at least 12 significant digits and to obtain
the matrix elements appearing in Eq. (7) with sufficient
precision. For continuum states (with energy E), Born-
Oppenheimer wave functions are generated from the 1sσg
electronic curve.
Table I illustrates the relative importance of the various

contributions to the bF coefficient. Below the ðZαÞ2EF
term, we give within parentheses the previous value taken
from Ref. [8]. Final values of bF for the vibrational states
v ¼ 0–8 are given in Table II along with previously
published theoretical values. We find that the contribution
by vibrational excitations amounts to 23% of the total
ðZαÞ2EF order correction for the ground (v ¼ 0) state and
decreases with increasing vibrational quantum number
(e.g., to 16% for v ¼ 4 and 9% for v ¼ 8). The dominant
effect is that of the bound vibrational states [first term in
Eq. (7)]; the contribution of continuum states (second term)
is negligible for the lowest states but grows with the
vibrational quantum number and becomes significant for
v ¼ 6, 7, and 8, where it amounts to 0.1, 0.2, and 0.5 kHz,
respectively. For the proton finite-size contributions, we use
a set of values where the Zemach radius is deduced from
the hyperfine splitting in H [16,22–24], with the aim of
performing a consistency check between the results of hfs
spectroscopy of H and Hþ

2 . The accuracy of our new values
of bF is limited by uncalculated higher-order QED cor-
rections, which are expected to be smaller than 1 kHz.
To compare our theoretical results with those from the

experiment, we extract an experimental value of bF from
the measured hyperfine frequencies following the pro-
cedure described in Ref. [8]. The experimental accuracy
claimed in Ref. [1] translates to an uncertainty margin on
bF of 1 kHz. Less precise experimental values are available

TABLE I. Summary of the contributions to the spin-spin
interaction coefficient bF (in megahertz). To illustrate the con-
tribution of Eq. (7), which was hitherto neglected, the value of the
ðZαÞ2 term taken from Ref. [8] is shown within parentheses.

Contribution v ¼ 0 v ¼ 4 v ¼ 8

bF [7] 922.9918 836.7835 775.2206

ðZαÞ2 0.0663 0.0607 0.0569

(0.0513) (0.0510) (0.0515)

αðZαÞ −0.0887 −0.0804 −0.0745
αðZαÞ2 ln2ðZαÞ −0.0074 −0.0067 −0.0062
ΔEZ −0.0369 −0.0335 −0.0310
ΔEp

R 0.0054 0.0049 0.0045

ΔEpol 0.0013 0.0012 0.0011

bF (this work) 922.9318 836.7294 775.1714
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for the v ¼ 0 state [2,3]. The comparison with our
theoretical values is presented in Table II. Theoretical
and experimental results are in excellent agreement (i.e.,
well within the 1-kHz experimental uncertainty). This
agreement strongly supports our finding that accounting
for the vibrational excitations is of essential necessity.
In Table III, we compare the complete set of Jefferts’

results [1] for the L ¼ 1 state with our theoretical data.
Again, the agreement is within the experimental uncer-
tainty for all transitions, except for the ð3=2; 3=2Þ–
ð3=2; 1=2Þ transitions where small discrepancies (up to
2 kHz) are observed. The main interaction responsible for
this splitting is the electron spin-orbit interaction [second
term in Eq. (2)]; better theoretical values could be obtained

by including higher-order corrections to the ce coefficient,
similarly to what we did for bF.
The work presented here is of interest for several reasons.

First, it successfully concludes a series of theoretical
efforts, spanning nearly half a century, to fully explain
the measured Hþ

2 hyperfine structure reported in Ref. [1]
within its 1-ppm uncertainty. Second, our results indicate
that the nuclear properties of the proton as they are inferred
from the hfs of atomic hydrogen are compatible with the
available theoretical and experimental data on Hþ

2 . This is
expected for Hþ

2 , whose electronic ground state can be
written, in the lowest level of approximation, as a linear
superposition of two atomic 1s orbitals, distributed over the
two nuclei. Third, our findings suggest that, for future
improvements of the theoretical hyperfine structure of Hþ

2 ,
the ðZαÞ2EF order contribution should be evaluated
entirely within the three-body framework. This poses a
serious challenge for theory, since the cancellation of
divergent parts in the three-body framework will be
substantially more complicated than for the two-center
adiabatic approximation.
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