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We report the first measurement of absolute hadronic branching fractions of A} baryon at the A} A7
production threshold, in the 30 years since the A} discovery. In total, 12 Cabibbo-favored A} hadronic
decay modes are analyzed with a double-tag technique, based on a sample of 567 pb~! of e e~ collisions
at /s = 4.599 GeV recorded with the BESIII detector. A global least-squares fitter is utilized to improve
the measured precision. Among the measurements for twelve A decay modes, the branching fraction
for Af — pK~zn" is determined to be (5.84 4 0.27 4 0.23)%, where the first uncertainty is statistical
and the second is systematic. In addition, the measurements of the branching fractions of the other 11
Cabibbo-favored hadronic decay modes are significantly improved.

DOI: 10.1103/PhysRevLett.116.052001

Charmed baryon decays provide crucial information for
the study of both strong and weak interactions. Hadronic
decays of Af, the lightest charmed baryon with quark
configuration udc, provide important input to A, physics
as A, decays dominantly to A} [1,2]. Improved measure-
ments of the A} hadronic decays can be used to constrain
fragmentation functions of charm and bottom quarks by
counting inclusive heavy flavor baryons [3]. Most A}
branching fractions (BF) have until now been obtained by
combining measurements of ratios with a single branching
fraction of the golden reference mode A} — pK~z™, thus
introducing strong correlations and compounding uncertain-
ties. The experimentally averaged BE, B(Af — pK—z") =
(5.0 £ 1.3)% [4], has large uncertainty due to the introduc-
tion of model assumptions on A} inclusive decays in these
measurements [5]. Recently, the Belle experiment reported
B(Af - pK~n") = (6.84 £ 0.24071)% with a precision
improved by a factor of 5 over previous results [6].
However, most hadronic BFs still have poor precision [4].
In this Letter, we present the first simultaneous determi-
nation of multiple A absolute BFs.

Our analysis is based on a data sample with an inte-
grated luminosity of 567 pb~' [7] collected with the
BESIII detector [8] at the center-of-mass energy of
/s =4.599 GeV. At this energy, no additional hadrons
accompanying the AA7 pairs are produced. Previously,
the Mark III collaboration measured D hadronic BFs at the
DD threshold using a double-tag technique, which relies
on fully reconstructing both D and D decays [9]. This
technique obviates the need for knowledge of the lumi-
nosity or the production cross section. We employ a similar
technique [10] using BESIII data near the A; A threshold,
resulting in improved measurements of charge-averaged
BFs for 12 Cabibbo-favored hadronic decay modes:
A — pKY, pK=nt, pKSx®, pKSata~, pK-nta’, Axt,
Axtal, Azntaat, Z0xt, a9, Statz, and Ztw [11].
Throughout the Letter, charge-conjugate modes are implic-
itly assumed, unless otherwise stated.

To identify the Al A; signal candidates, we first recon-
struct one A, baryon [called a single tag (ST)] through
the final states of any of the 12 modes. For a given decay
mode j, the ST yield is determined to be

N§T = Ny B, (1)
where N+ - is the total number of produced AFA; pairs
and ¢; is the corresponding efficiency. Then we define
double-tag (DT) events as those where the partner A}
recoiling against the A7 is reconstructed in one of the
12 modes. That is, in DT events, the A A7 event is fully
reconstructed. The DT yield with Al — i (signal mode)
and A7 — j (tagging mode) is

NB'T = NA:A;BiBjSij’ (2)

where ¢;; is the efficiency for simultaneously reconstruct-

ing modes 7 and j. Hence, the ratio of the DT yield (N}"
and ST yield (NJS.T) provides an absolute measurement of

the BF:
DT
‘ Nij €;
"ONSTg
i€

(3)

Because of the large acceptance of the BESIII detector
and the low multiplicities of A, hadronic decays, €;; ~ ¢;¢;.
Hence, the ratio ¢;/¢;; is insensitive to most systematic
effects associated with the decay mode j, and a signal BF
B, obtained using this procedure is nearly independent
of the efficiency of the tagging mode. Therefore, B; is
sensitive to the signal mode efficiency (g;), whose uncer-
tainties dominate the contribution to the systematic error
from the efficiencies. According to Eqs. (1) and (2), the
total DT yield with Al — i (signal mode) over the 12 ST
modes is determined to be

NPT = N5y BB, (4)
J

where T = [3:(B;e;;)/>_;B)] is the average DT effi-
ciency weighted over the 12 modes.

The BESIII detector is an approximately cylindrically
symmetric detector with 93% coverage of the solid angle
around the e™ e~ interaction point (IP). The components
of the apparatus, ordered by distance from the IP, are a
43-layer small-cell main drift chamber (MDC), a time-
of-flight (TOF) system based on plastic scintillators with
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two layers in the barrel region and one layer in the end-
cap region, a 6240-cell CsI(TI) crystal electromagnetic
calorimeter (EMC), a superconducting solenoid magnet
providing a 1.0 T magnetic field aligned with the beam
axis, and resistive-plate muon-counter layers interleaved
with steel. The momentum resolution for charged tracks
in the MDC is 0.5% for a transverse momentum of
1 GeV/c. The energy resolution in the EMC is 2.5% in
the barrel region and 5.0% in the end-cap region for
1 GeV photons. Particle identification (PID) for charged
tracks combines measurements of the energy deposit
dE/dx in MDC and flight time in TOF and forms
likelihoods L(h)(h = p, K, =) for a hadron h hypothesis.
More details about the BESIII detector are provided
elsewhere [8].

High-statistics Monte Carlo (MC) simulations of e*e~
annihilations are used to understand backgrounds and to
estimate detection efficiencies. The simulation includes
the beam-energy spread and initial-state radiation (ISR)
of the e'"e™ collisions as simulated with Kkmc [12].
The inclusive MC sample consists of AfAZ events,
Dy production [13], ISR return to lower-mass y states,
and continuum processes e"e” = ¢g(q = u, d, s). Decay
modes as specified in the Particle Data Group summary
(PDG) [4] are modeled with EVTGEN [14]. For the MC
production of ete™ — A} Az, the observed cross sections
are taken into account, and phase-space-generated A
decays are reweighted according to the observed behaviors
in data. All final tracks and photons are fed into a GEANT4-
based [15] detector simulation package.

Charged tracks detected in the MDC must satisfy
|cos @] < 0.93 (where @ is the polar angle with respect
to the beam direction) and have a distance of closest
approach to the IP of less than 10 cm along the beam axis
and less than 1 cm in the perpendicular plane, except for
those used for reconstructing K§ and A decays. Tracks
are identified as protons when the PID determines this
hypothesis to have the greatest likelihood [L(p) > L(K)
and L(p) > L(x)], while charged kaons and pions are
discriminated based on comparing the likelihoods for these
two hypotheses [L£(K) > L(x) or L(n) > L(K)].

Showers in the EMC not associated with any charged
track are identified as photon candidates after fulfilling
the following requirements. The deposited energy is
required to be larger than 25 MeV in the barrel
(| cos 6] < 0.8) region and 50 MeV in the end-cap region
(0.84 < | cos | < 0.92). To suppress electronic noise and
showers unrelated to the event, the EMC time deviation
from the event start time is required to be within (0, 700) ns.
The z° candidates are reconstructed from photon
pairs, and their invariant masses are required to satisfy
115 < M(yy) < 150 MeV/c?. To improve momentum
resolution, a mass-constrained fit to the z° nominal mass
is applied to the photon pairs and the resulting energy and
momentum of the z° are used for further analysis.

Candidates for Kg and A are formed by combining
two oppositely charged tracks into the final states 7+~
and pz~. For these two tracks, their distances of closest
approaches to the IP must be within +20 cm along the
beam direction. No distance constraints in the transverse
plane are required. The charged 7 is not subjected to the
PID requirements described above, while proton PID is
implemented in order to improve signal significance. The
two daughter tracks are constrained to originate from a
common decay vertex by requiring the y? of the vertex
fit to be less than 100. Furthermore, the decay vertex is
required to be separated from the IP by a distance of
at least twice the fitted vertex resolution. The fitted
momenta of the ztz~ and pz~ are used in the further
analysis. We impose requirements 487 < M(ztz™) <
511 MeV/c? and 1111 < M(pz~) < 1121 MeV/c? to
select K§ and A signal candidates, respectively, which
are within about 3 standard deviations from their nominal
masses. To form XV, ¥ and @ candidates, requirements on
the invariant masses of 1179 < M(Ay) < 1203 MeV/c?,
1176 < M(px°) <1200 MeV/c? and 760 < M (z*z~n°) <
800 MeV/c?, are imposed.

When we reconstruct the decay modes pK9r°,
ngJT+7Z_ and XtzTz~, possible backgrounds from
A — pr~ in the final states are rejected by requiring
M(pz~) outside the range (1110, 1120) MeV/c?. In addi-
tion, for the mode ngﬂ,'O, candidate events within the
range 1170 < M(pn°) < 1200 MeV/c? are excluded to
suppress X7 backgrounds. To remove Kg candidates in
the modes AzTz~ 7+, £t2° and Ttz 2", masses of any
pairs of #77~ and 7z°7z° are not allowed to fall in the
range (480,520) MeV/c?.

To discriminate A, candidates from background, two
variables reflecting energy and momentum conservation
are used. First, we calculate the energy difference,
AE = E — Ey,m, Where E is the total measured energy of
the A, candidate and Ej,,, is the average value of the e¢* and
e~ beam energies. For each tag mode, candidates are
rejected if they fail the AE requirements in Table I, which
correspond to about 3 times the resolutions. Second, we
define the beam-constrained mass My of the A, candidates
by substituting the beam-energy Eye,, for the energy E of
the A, candidates, Mgcc? = \/EL,,.. — p*c?, where p is the
measured A, momentum in the center-of-mass system of
the eTe™ collision. Figure 1 shows the My distributions
for the ST samples, where evident A, signals peak at the
nominal A, mass position (2286.46 4+ 0.14) MeV/c? [4].
The MC simulations show that peaking backgrounds and
cross feeds among the 12 ST modes are negligible.

We perform unbinned extended maximum likelihood
fits to the Mpc distributions to obtain the ST yields, as
illustrated in Fig. 1. In each fit, the signal shape is derived
from MC simulations of the signal ST modes convolved
with a Gaussian function to account for imperfect modeling
of the detector resolution and beam-energy spread. The
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TABLE I. Requirement on AE, ST yields, DT yields and
detection efficiencies for each of the decay modes. The uncer-
tainties are statistical only. The quoted efficiencies do not include
any subleading BFs.

Mode AE MeV)  NT &;(%) NPT £PT(9)
pK$ (=20,20) 1243437 559 97410 166
pK=z*  (=20,20) 6308 +88 512 420+22 14.1
pK3a° (-30,20) 558433 206 47+8 68
pKSntn= (=20,20) 485429 214 34+6 64
pK-ntz® (=30,20) 1849+71 196 176+14 7.6
Azt (=20,20) 706+27 422  60+8 127
Azta® (=30,20) 1497 £52 157 101+13 54
Aztz~rt  (=20,20) 609431 120 53+£7 36
Ozt (=20,20) 522427 299  38+6 99
pag (=50,30) 309424 238 25+5 8.0
Statam  (=30,20) 1156+49 242  80+9 8.1
Ttw (=30,20) 157422 99 13+3 3.8

parameters of the Gaussians are allowed to vary in the
fits. Backgrounds for each mode are described with the
ARGUS function [16]. The resultant ST yields in the signal
region 2276 < Mpc < 2300 MeV/c? and the correspond-
ing detection efficiencies are listed in Table L.

In the signal candidates of the 12 ST modes, a specific
mode Al — i is formed from the remaining tracks and
showers recoiling against the ST AZ. We combine the DT
signal candidates over the 12 ST modes and plot the
distributions of the My variable in Fig. 2. We follow the
same fit strategy as in the ST samples to estimate the total
DT yield NPT in Eq. (4), except that the DT signal shapes
are derived from the DT signal MC samples and convolved

3000 F L ) .
pK® pKn* pKm*n®
2000 |- s :
1000 F
. 600
RS
> 400
=
Z 200
g
Zz
= 300
@
>
= 200
100
200 F
100 f
L i Pl B P I B
2.26 2.28 23 226 2.28 2.3 2.26 2.28 2.3
M (GeVic?)
FIG. 1. Fits to the ST Mpc distributions in data for the different

decay modes. Points with error bars are data, solid lines are the
sum of the fit functions, and dashed lines are the background
shapes.

with the Gaussian function. The parameters of the
Gaussians are also allowed to vary in the fits. The extracted
DT yields are listed in Table I. The 12 x 12 DT efficiencies
¢;; are evaluated based on the DT signal MC samples, in
order to extract the BFs.

Main sources of systematic uncertainties related to the
measurement of BFs include tracking, PID, reconstruction
of intermediate states and intermediate BFs. For the AE and
Mpc requirements, the uncertainties are negligible, as we
correct resolutions in MC samples to accord with those in
data. Uncertainties associated with the efficiencies of the
tracking and PID of charged particles are estimated by
studying a set of control samples of ete™ — z7atn 7",
K*K~n"z~ and ppr*x~ based on data taken at energies
above /s = 4.0 GeV. An uncertainty of 1.0% is assigned
to each 7° due to the reconstruction efficiency. The
uncertainties of detecting Kg and A are determined to be
1.2% and 2.5%, respectively. Reweighting factors for the
12 signal models are varied within their statistical uncer-
tainties obtained from the ST data samples. Deviations of
the resultant efficiencies are taken into account in system-
atic uncertainties. Systematic uncertainties due to limited
statistics in MC samples are included. Uncertainties on the
BFs of intermediate state decays from the PDG [4] are also
included. A summary of systematic uncertainties are given
in Table II.

We use a least-squares fitter, which considers statistical
and systematic correlations among the different hadronic
modes, to obtain the BFs of the 12 A decay modes
globally. Details of this fitter are discussed in Ref. [17].
In the fitter, the precisions of the 12 BFs are constrained to a
common variable, N AtRs> according to Egs. (1) and (4). In
total, there are 13 free parameters (12 B; and N+5-) to be
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FIG. 2. Fits to the DT My distributions in data for different
signal modes. Points with error bars are data, solid lines are the
sum of fit functions, and dashed lines are background shapes.
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TABLE II. Summary of systematic uncertainties, in percent.
The total numbers are derived from the least-squares fit, by taking
into account correlations among different modes.

Signal MC Quoted

Source  Tracking PID Kg A 7° model stat BFs Total
124 1.3 03 1.2 02 04 01 20
pK " 2.5 32 0.2 39
pKn® 1.1 16 12 1.0 1.0 05 01 27
pKSntn= 28 54 1.2 05 05 01 59
pK- 2% 33 5.8 1.0 20 05 6.6
An™ 1.0 1.0 2.5 05 05 08 24
Vg 1.0 1.0 2510 06 06 08 27
Antz—zt 3.0 3.0 25 0.8 08 08 47
207+ 1.0 1.0 2.5 1.7 07 08 24
=0 1.3 0.3 20 1.7 08 0.1 25
Strta 3.0 3.7 1.0 08 04 01 47
PR 3.0 32 20 7.1 1.0 08 45

estimated. As peaking backgrounds in ST modes and cross
feeds among the 12 ST modes are suppressed to a
negligible level, they are not considered in the fit.

The extracted BFs of A} are listed in Table III; the
correlation matrix is available in the Supplemental Material
[18]. The total number of A} A7 pairs produced is obtained
tobe Ny:z- = (1059 £48£0.5) x 103. The goodness-
offit is evaluated as y*/ndf = 9.9/(24 — 13) = 0.9.

To summarize, 12 Cabibbo-favored Al decay rates are
measured by employing a double-tag technique, based on a
sample of threshold data at /s = 4.599 GeV collected at
BESIIL. This is the first absolute measurement of the A}
decay branching fractions at the A A production thresh-
old, in the 30 years since the A discovery. A comparison
with previous results is presented in Table III. For the
golden mode B(pK~z'), our result is consistent with
that in PDG, but lower than Belle’s with a significance
of about 2¢. For the branching fractions of the other modes,

TABLE III. Comparison of the measured BFs in this work with
previous results from PDG [4]. For our results, the first un-
certainties are statistical and the second are systematic.

Mode This work (%) PDG (%)
124 1.52 +0.08 +0.03 1.15+0.30
pKnt 5.84+0.27+0.23 50+£1.3
pKon® 1.87 +0.13 + 0.05 1.65 + 0.50
pKon "~ 1.53+0.11 +0.09 1.30 £0.35
pK—nta® 4.53+0.23 £0.30 34+1.0
Axt 1.24 +0.07 +0.03 1.07 £0.28
Anta° 7.01 £0.37 £0.19 36+13
Artrnmt 3.81 +£0.24 +0.18 2.6 +0.7
0zt 1.27 4+ 0.08 £ 0.03 1.05 4+ 0.28
=ta0 1.18 £ 0.10 £ 0.03 1.00 +0.34
Stata 4.25+0.24 £0.20 36+ 1.0
>tw 1.56 +0.20 + 0.07 27+1.0

the precisions are improved by factors of 3—6 compared
to the world average values.
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