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We present a manifestly local, diffeomorphism invariant, and locally Poincaré invariant formulation of
vacuum energy sequestering. In this theory, quantum vacuum energy generated by matter loops is canceled
by auxiliary fields. The auxiliary fields decouple from gravity almost completely. Their only residual effect
is an a priori arbitrary, finite contribution to the curvature of the background geometry, which is radiatively
stable. Its value is to be determined by a measurement, like the finite part of any radiatively stable
UV-sensitive quantity in quantum field theory.
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In a recent series of papers [1–3], two of the authors have
suggested the mechanism for sequestering vacuum energy.
The idea was to gravitationally decouple vacuum energy
generated by matter loops, providing a workaround for
Weinberg’s no-go theorem obstructing dynamical adjust-
ment [4]. (The mechanism ignores the graviton loops.
However, the matter loops alone render the cosmological
constant radiatively unstable unless the matter is conformal
and/or supersymmetric; see [4–8]). The mechanism is
based on two new rigid variables without any local degrees
of freedom: the bare cosmological constant Λ and the
scaling parameter λ measuring the matter sector dimen-
sional scales in Planck units. They are Lagrange multi-
pliers, enforcing two global constraints, in a way similar to
the isoperimetric problem of variational calculus [9]. The
action principle with these fields rests on [1,2]
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where the global interaction term σðΛ=λ4μ4Þ is outside of
the integral. The function σ is required to be an odd
differentiable function, and the mass scale μ is around the
quantum field theory (QFT) cutoff. Φ correspond to the
“protected” matter fields, e.g., the standard model.
The variation of (1) with respect to Λ links the gauge
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The matter sector quantum corrections to vacuum energy
all scale as λ4 [10]. They are all accounted for in hTα

αi and

cancel automatically from the right-hand side of (2).
Extracting the constant contribution to the stress energy,
Vvac, and rewriting stress energy as Tμ

ν ¼ −Vvacδ
μ
ν þ τμν,

where τμν describe local excitations, we see that Vvac
completely drops out from (2). There remains a residual
cosmological constant: the historic average hτμμi=4, which
is completely insensitive to vacuum loop corrections and is
small in large and old universes [1,2]. (This is thanks to two
approximate symmetries of the theory, broken only by the
gravitational sector: the scaling λ → Ωλ, gμν → Ω−2gμν, and
Λ → Ω4Λ and the shift Λ → Λþ αλ4 and Lm → Lm − α.
They ensure that the vacuum energy cancels independently
of the scale and make a small residual cosmological
constant natural, since they are enhanced in the conformal
limit describing infinite conformal universes.) It must be
nonlocal, since it is the renormalized, finite part of the
cosmological constant: so it must be measured, as any
leftover of a UV-sensitive quantity in QFT. Since the
cosmological constant is a spacetime filling quantity, the
only detector which can measure it with arbitrary precision
is the whole Universe, implying a nonlocal measurement
[1,2,11]. Furthermore, the original mechanism requires
finite spacetime volume to accommodate nonzero matter
sector mass scales.
Even so, the global term σðΛ=λ4μ4Þ is unusual. Although

the “on-shell nonlocality” it induces by fixing the
residual cosmological constant is harmless—and indeed
necessary—in QFT coupled to (semi)classical gravity, this
term appears to conflict with the expectations about the
microscopic origin of the mechanism. If the action (1) is a
low energy limit of some theory of quantum gravity, one
expects that the underlying theory has a Feynman path
integral [12]. Yet σðΛ=λ4μ4Þ seems to obstruct this, because
it does not appear to be additive over spacetime. Terms like
it arise as low energy corrections to the action from
quantum gravity effects, described by wormhole calculus
[13]. They have been argued to appear if there are locally
separated, but quantum-entangled duplicate universes [14],
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where one copy could even be compactified [15]. Here we
will seek a simpler route and show that global terms like
σðΛ=λ4μ4Þ can be thought of as conserved quantities in a
manifestly local theory. We will also show that the rigid
variables Λ and λ are solutions of local field equations
which admit only constant roots thanks to the gauge
redundancies of the extra sectors. The resulting theory
sequesters the matter-generated quantum vacuum energy in
almost exactly the same way as the original proposal [1–3].
The main differences are that the residual cosmological
constant is not uniquely fixed in terms of other matter
sources, but involves an arbitrary integration constant
(actually, a ratio of two constants), and that the spacetime
volume of the underlying geometry does not have to be
finite. This is the “price to pay” (or a “reward to reap”)
when interpreting the two global constraints as solutions of
two local field equations. However, the residual cosmo-
logical constant—a finite part of a UV-sensitive quantity—
must be measured rather than computed. Since it is
radiatively stable, its value can now be evaluated reliably.
Let us now turn to the construction of a local theory

which sequesters matter sector vacuum energy. For reasons
of calculational simplicity, we can absorb λ into the
definition of the Planck scale, going from “Einstein frame”
to “Jordan frame” variables by gμν → ðκ2=M2

PlÞgμν,
Λ → ΛðM2

Pl=κ
2Þ2, where we have defined the new variable

κ2 ¼ M2
Pl=λ

2. The action now reads
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Varying with respect to the rigid variable κ2 yields a global
constraint hRi ¼ 0. The metric variation gives the standard
gravitational field equations. Combining them with hRi¼0

yields ðΛ − 1
4
hTα

αiÞ=κ2 ¼ 0. When we do not decouple
gravity, so κ2 is finite, this shows that Λ ¼ hTα

αi=4, as
before. Furthermore, Λ variation gives
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diverged,Λwould have to be a singular point of σ0,

and moreover the constraint ð1=κ2ÞðΛ − 1
4
hTα

αiÞ ¼ 0 could
be satisfied only with κ2 infinite. The ratio of the particle
masses to the Planck scale κ2 would vanish then, forcing the
matter sector to be massless. Thus, as in the Einstein frame,
the world volume of the Universe must be finite to accom-
modate nonzeromatter sectormass scales.Note that κ2 andΛ
are taken to be rigid quantities, without any local degrees of
freedom, being uniform throughout spacetime, even though
we are to vary (1) with respect to both of them. Our aim is to
relax this and change the action (3) so that it is completely
local and yet leads to qualitatively the same field equations.
A clue how to do this is provided in the discussion of the

isoperimetric problem in the calculus of variations in
Ref. [9]. The idea is to interpret the global constraint
which fixes the perimeter of a curve as an integral of its first
derivative and enforce a constraint on it by way of a local
Lagrange multiplier. Since the local constraint involves

only a first derivative, the solution for the Lagrange
multiplier must be a constant, but now this is a consequence
of the equations of motion rather than an external
assumption. The cost is to allow the perimeter to be an
arbitrary integration constant rather than a fixed number.
Nevertheless, the variational procedure then picks an
extremal surface for each given value of the perimeter.
The action is additive, and one can define the Hamiltonian
and the path integral for it.
We will adopt this procedure to the case of a QFT

coupled to gravity, starting with (3). We wish to promote
the rigid parameters κ2 and Λ to local fields and reinterpret
the global term as an integral of local expressions, which
simultaneously yield local equations ∂μκ

2 ¼ ∂μΛ ¼ 0.
The new local additions should not gravitate directly in
order to preserve the main feature of sequestering: the
matter-induced quantum vacuum energy needs to com-
pletely drop out. The route to follow has already been
hinted at in the gauge invariant formulation of unimodular
quantum gravity by Henneaux and Teitelboim in 1989 [16].
To enforce the constraint

ffiffiffi
g

p ¼ 1 in a way which mani-
festly respects diffeomorphism invariance, instead of add-
ing

R
d4xΛðxÞð ffiffiffi

g
p − 1Þ to the Einstein-Hilbert action and

treating ΛðxÞ as a Lagrange multiplier, one adds a term
with a different measure. Instead of

ffiffiffi
g

p
, any determinant

works in its stead. Since the covariant measure is
dxμdxνdxλdxσ
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g
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any 4-form Fμνλσ , using the gauge-fixing term
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Since F is completely independent of the metric off shell, it
does not appear in the gravitational field equations at all. If
we define Fμνλσ ¼ 4∂ ½μAνλσ�, where the square brackets
denote antisymmetrization of enclosed indices, then the
field equation obtained by varying Aνλσ is just ∂μΛðxÞ ¼ 0,
fixing the Lagrange multiplier ΛðxÞ to be an arbitrary
constant—i.e., rigid—contribution to the total cosmologi-
cal constant. Still, the action is perfectly local and additive,
and the diffeomorphisms remain unbroken. Furthermore,
the variation with respect to ΛðxÞ yields Fμνλσ ¼ ffiffiffi

g
p

ϵμνλσ,
meaning that F is a nonpropagating, auxiliary field. (Since
the action is linear in F, it means that integrating over it
yields only a constraint, without any local degrees of
freedom.) We stress that the real reason for the absence
of any local degrees of freedom from Λ is the gauge
symmetry of the 4-form. The 4-form is invariant under the
transformations Aμνλ → Aμνλ þ 3∂ ½μBνλ�. If we integrate the
last term in the gauge fixing action (4), we find

−
1

3!

Z
∂ ½μΛðxÞAνλσ�dxμdxνdxλdxσ; ð5Þ

and under a gauge transformation it changes by δSGF ¼
− 1

2

R ∂ ½μΛðxÞ∂νBλσ�dxμdxνdxλdxσ. So gauge invariance
δSGF ¼ 0 is really what forces ∂μΛ ¼ 0. Note that nothing
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changes if we alter the gauge-fixing condition for
ffiffiffi
g

p
to be

dependent on Λ. Indeed, we can take
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ΛðxÞ ffiffiffi
g
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4!
σ

�
ΛðxÞ
μ4

�
Fμνλσdxμdxνdxλdxσ

�

ð6Þ

without changing any of the results above.
The replacement of the Λ-dependent terms in (3) by the

gauge-fixing action SGF of (6) is precisely the trick we are
after. It renders the action manifestly local and forces
Λ ¼ const. Since we have one more rigid Lagrange
multiplier in (3), κ2, we can follow exactly the same
procedure to make it local off shell and constant on shell:
we add an extra copy of the 4-form term in (6) to the action,
where we replace Λ=μ4 by κ2=M2

Pl. So our manifestly local
action that will sequester matter sector vacuum energy is

S¼
Z

d4x
ffiffiffi
g

p �
κ2ðxÞ
2

R−ΛðxÞ−Lmðgμν;ΦÞ
�

þ 1

4!

Z
dxμdxνdxλdxσ

�
σ

�
ΛðxÞ
μ4

�
Fμνλσþ σ̂

�
κ2ðxÞ
M2

Pl

�
F̂μνλσ

�
:

ð7Þ

Here, Fμνλσ ¼ 4∂ ½μAνλσ� and F̂μνλσ ¼ 4∂ ½μÂνλσ� are the two
4-formswhose gauge symmetries renderΛ and κ2 constant on
shell, respectively. The functions σ and σ̂ are two smooth
functions, which are otherwise in principle arbitrary. (They
must not be linear functions in order to permit solutions where
the finitevaluesofNewton’s constant andbackgroundvacuum
curvature aregiven by arbitrary form fluxes). Their formmight
be constrained by additional phenomenological arguments.
The scales μ≲MPl are the field theory and gravitational
cutoffs, respectively. Note that the κ2 sector, which has
dramatic consequences in our theory, is completely absent
in unimodular gravity [16]. This makes the two theories very
different.
The field equations which follow from (7) are now

completely local:

κ2Gμ
ν ¼ ð∇μ∇ν − δμν∇2Þκ2 þ Tμ

ν − ΛðxÞδμν;
σ0

μ4
Fμνλσ ¼
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g

p
ϵμνλσ;

σ̂0

M2
Pl

F̂μνλσ ¼ −
1

2
R
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g

p
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σ0

μ4
∂μΛ ¼ 0;

σ̂0

M2
Pl

∂μκ
2 ¼ 0: ð8Þ

Here Tμν ¼ ð2= ffiffiffi
g

p Þðδ=δgμνÞ R d4x
ffiffiffi
g

p
Lmðgμν;ΦÞ is the

matter stress-energy tensor. The last two equations force
Λ and κ2 to be integration constants, and κ2 is the bare
Planck scale. To extract the relationship of the bare
cosmological constant Λ to the geometry and the matter
fields, we trace out the gravitational field equations and
average them over all of spacetime, using the equations for
the 4-forms to eliminate hRi. This yields

Λ ¼ 1

4
hTα

αi þ ΔΛ;

ΔΛ ¼ 1

4
κ2hRi ¼ −

μ4

2

κ2σ̂0

M2
Plσ

0

R
F̂4R
F4

: ð9Þ

Substituting this into the gravitational field equations
in (8) gives

κ2Gμ
ν ¼ Tμ

ν −
1

4
δμνhTα

αi − ΔΛδμν; ð10Þ

with ΔΛ given by Eq. (9). The historic averages of
Refs. [1,2], which are integrals of the relevant quantities
over the whole of spacetime, divided by the total spacetime
volume (which needs to be treated with care when the
spacetime volume is infinite), are a consequence of “meas-
uring” the renormalized vacuum energy on a solution,
instead of arising from a nonlocal action. Equation (10),
alongwith the definition ofΔΛ, describes the full set of field
equations (8), with the nonmetric fields Λ and κ, and the
4-forms integrated out up to their global averages.
Now, as in the case of vacuum energy sequestering with

global constraints, we work in the limit of (semi)classical
gravity, treating gravitational fields only classically. To
compute the quantum corrections involving loops with
internal matter lines only, we use the equivalence principle
to pick the largest locally flat frame on a fixed background
geometry and transform (7) to locally Minkowski coor-
dinates. We compute the matter loops in the locally flat
frame, using the standard techniques of QFT in flat space,
while renormalizing the field theory at any required level in
the loop expansion (possibly having to account for the
hierarchies in the field theory directly by using specific
tools like supersymmetry). Once the pure matter sector
quantities are accounted for, we turn to matter corrections
to the gravitational background.
To begin with, we include the graviton vacuum diagrams

which renormalize the Planck scale. On a background
which solves (8)–(10), the renormalized Planck scale
is [17]

ðMren
Pl Þ2 ≃ κ2 þOðNÞðMUVÞ2 þ

X
species

Oð1Þm2 lnðMUV=mÞ

þ
X
species

Oð1Þm2 þ…; ð11Þ

where MUV ≃ μ is the matter UV regulator, N counts the
matter sector degrees of freedom, and m is a mass of a
virtual particle in the loop. Since κ2 is a classical integration
constant, we could have initially taken it small, having to
renormalize it by a large one-loop matter sector correction.
However, as for any other UV-sensitive quantity, the
physical value of ðMren

Pl Þ2 is not calculable in QFT. It needs
to be determined by measurement. Once it is set to its
experimentally determined value, reflecting the observed
hierarchy between the matter scales and the Planck scale,
it is radiatively stable as long as μ≲MPl, as we required.
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In effect, radiative stability follows, since the Planck scale
arises in response to the matter quantum corrections, as in
induced gravity [18,19]. Also note that, as in Refs. [1,2],
this additive renormalization of Planck scale does not
change the field equations (8)–(10) in the least.
Next we consider the loop corrections to the stress

energy. We compute them in the locally flat frame and
account for both the local scales controlling the local stress-
energy contributions (such as energy densities and pres-
sures of particles, etc.) and the constant vacuum energy.
This gives rise to renormalized h0jTμ

νj0i, which we split as
Tμ

ν ¼ −Vvacδ
μ
ν þ τμν as in Refs. [1,2]. Here Vvac ¼

h0jLmj0i is the UV-sensitive quantum vacuum energy
calculated to any given precision; it is the external
momentum-independent part of h0jTμ

νj0i. Clearly, it can-
cels from Tμ

ν − 1
4
δμνhTα

αi ¼ τμν − 1
4
δμνhτααi in Eq. (10).

The remaining finite cosmological constant includes ΔΛ
of (9). It is a ratio of two 4-form fluxes and normalized
derivatives of the functions σ̂ and σ. To compute the
fluxes, we have to take the solutions for the 4-forms and
integrate them over the whole of the locally Lorentzian
box. The fluxes are therefore purely geometric, infrared
quantities, being controlled by the size of the box and
insensitive to the UV cutoff. The only loop corrections to
the flux-dependent terms come from the κ2 and Λ depend-
ence of the prefactors. Since their variations depend on the
dimensionless variables κ2=M2

Pl and Λ=μ4, they are
bounded by Oð1Þ for smooth σ̂ and σ. So all sources of
the gravitational field are radiatively stable under the matter
sector corrections. (We are assuming that the UV regulator
couples to the same metric gμν as the matter fields, as in
Refs. [1,2]).
In fact, it is instructive to split the field equations

(8)–(10) into separate sectors relative to how they depend
on the spacetime metric. Since κ2 and Λ are constant on
shell, we find, using form notation for the two 4-forms,

⋆F4 − h⋆F4i ¼ 0; h⋆F4i ¼
μ4

σ0
;

⋆F̂4 − h⋆F4i ¼
M2

Pl

2κ2σ̂0
ðταα − hτααiÞ; ð12Þ

ΔΛ ¼ 1

4
κ2hRi ¼ −

κ2σ̂0

2M2
Pl

h⋆F4i;

4Λþ 4Vvac ¼ hτααi þ κ2hRi; ð13Þ

κ2
�
Rμ

ν −
1

4
Rδμν

�
¼ τμν −

1

4
τααδ

μ
ν;

κ2ðR − hRiÞ ¼ −ðταα − hτααiÞ; ð14Þ
where ⋆ denotes the Hodge dual of a form. The form field
equations (12) show that the form sectors are radiatively
stable. This follows from how the form fluxes are computed
above, in the locally Lorentzian boxes, and because matter-
generated vacuum energy explicitly cancels from the stress-
energy sources in (12). The loops do correct these

expressions due to the explicit dependence on κ2;Λ, but
the corrections are at most Oð1Þ because they are sup-
pressed by M2

Pl and μ
4, respectively. As a result, the first of

Eqs. (13) similarly shows that ΔΛ and hRi are also
radiatively stable, being proportional to h⋆F̂i. The second
of Eqs. (13) is the cosmological constant counterterm
selection condition following from (7). The terms on its
right-hand side are radiatively stable, by the preceding
discussion, but Vvac clearly is not. This means that the large
radiative corrections are automatically canceled by Λ: the
dynamics picks a boundary condition which selects the
bare counterterm Λ that absorbs radiative corrections to
the vacuum energy. [The spacetime volume also locally
responds to radiative corrections by virtue of the second of
Eqs. (8). These corrections, by local rescaling, can be
interpreted as local field theory renormalizations of dimen-
sional quantities. However, they are never larger thanOð1Þ,
by virtue of our choice of σ and μ as a QFT cutoff.] Finally,
Eqs. (14) are the gravitational field equations split as a
traceless and trace part for convenience of comparison. But
as a consequence of (12) and (13), the UV-sensitive part of
the vacuum energy is explicitly canceled, unlike in general
relativity (GR) (unimodular or not). This shows that, except
for the UV-sensitive contributions to the vacuum energy,
the rest of the QFT gravitates just like in GR.
The residual correction ΔΛ is completely arbitrary but

radiatively stable once κ2 is fixed to be ∼ð1018 GeVÞ2. It is
a part of the finite leftover cosmological constant after
renormalization, together with 1

4
hτααi. This residual finite

cosmological constant is a priori completely arbitrary and
must be fitted to observations. In our Universe, it is
∼10−12 eV4. ΔΛ could be positive, yielding a universe
which expands forever and has an infinite world volume.
This is now natural: the matter sector masses are fixed and
finite. From Eqs. (8)–(10) and the action, even if ΔΛ ≠ 0,
the Planck scale κ2 is finite independently of it. Being UV
sensitive, it is also fixed by observation, and once measured
to be ∼MPl, it is radiatively stable, just as is ΔΛ. Although
the flux integrals

R
F4 and

R
F̂4 formally diverge in an

infinite spacetime, they do so at the same rate: F4 is
constant, and F̂4 is dominated by an asymptotic value of the
curvature scalar R which is bounded in a universe that
expands forever when matter satisfies the null energy
condition. Since both fluxes diverge as the world volume,
their ratio is bounded, and ΔΛ can be finite, small, and UV
stable, in an infinite universe with nonzero matter sector
scales. In such cases, ΔΛ is the only nonzero contribution
to the effective cosmological constant probed by geometry.
The historic average of nonconstant stress energy hτααi is
zero as long as the matter sources obey the null energy
condition. The historic integrals are dominated by the
regions near the turning point. These are never attained
in infinite universes. But by continuity the largest contri-
butions come from the regions with the largest volume.
There, both ταα and the historic averages vanish.
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How does such a mechanism evade Weinberg’s no-go?
After all, the theory appears to reduce to GR in the
gravitational sector. The key operational ingredient of the
mechanism is that the action (7) involves different local
measures, using 4-forms which do not depend on the metric
off shell. This means that the terms which multiply such
measures in the action (i) are constant, by virtue of the extra
gauge symmetries of the 4-form, and (ii) do not appear in the
trace of the gravitational field equations, because this term
comes precisely from the variation with respect to the metric
determinant. Hence, the theory has an almost completely
nongravitating sector, affecting only the trace of the gravi-
tational field equations in the extreme infrared. It is therefore
strongly violating the weak equivalence principle in the far
infrared, modifying only how the vacuum energy gravitates.
The form fields play the role of a selection mechanism and
the vacuum energy sink, adjusting order by order in the loop
expansion to arrange for the bare counterterm Λ to absorb
away only the vacuum energy loops from the gravitational
field equations. (Note that the approximate symmetries
mentioned earlier are still operational, ensuring that the
residual cosmological constant ΔΛ is naturally small.)
Because of this, even though the local solutions of the
theory are the same as in GR, the global structure which
controls the vacuum geometry is very different. We empha-
size that, although the numerical value of the effective
cosmological constant is a priori undetermined, once
matched to observations it remains unaffected even as we
include additional radiative corrections to the vacuum
energy without the need of fine-tuning by hand. This is
certainly unlike in plain vanilla GR and is a consequence of
our modification of the global dynamics of gravity.
In summary, we have constructed a manifestly local

theory which sequesters all matter-generated quantum
vacuum energy. The theory arises from a local action
which is additive in spacetime and admits standard
Hamiltonian dynamics, being a consistent starting point
for a definition of the Feynman path integral. On shell, by
virtue of the local conservation laws, the modifications of
the gravitational sector behave very similarly to the global
setup of Refs. [1,2]. However, now solutions can have a
finite, eternal cosmological constant and an infinite world
volume while supporting the finite Planck scale and matter
sector scales. It is interesting to explore the framework
further, to understand cosmological behavior, inflation
(including eternal inflation [20] which is consistent with
this framework), effects of phase transitions, and interplay
between gravity and particle physics.
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