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There is a deep tension between the well-developed theory of gravitational waves from isolated systems
and the presence of a positive cosmological constant Λ, however tiny. In particular a generalization of
Einstein’s 1918 quadrupole formula that would allow a positive Λ is not yet available. We first explain the
principal difficulties and then show that it is possible to overcome them in the weak field limit. These results
also provide concrete hints for constructing the Λ > 0 generalization of the Bondi-Sachs framework for
full, nonlinear general relativity.
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Although Einstein had shown that general relativity
admits gravitational waves in the weak field approximation
already in 1916, in 1936 he suggested that this result is an
artifact of linearization [1]. Confusion on the reality of
gravitational waves in full nonlinear theory persisted until
the 1960s [2]. It was finally dispelled through the work of
Bondi, Sachs, and others [3]. Penrose geometrized this
framework by introducing the notion of a conformal
completion whose boundary I serves as the natural arena
to analyze gravitational radiation [4]. There is a coordinate
invariant notion at I , now called the Bondi news tensor [5],
that characterizes the presence of gravitational waves.
Expressions [3,6] of the energy, momentum, and angular
momentum carried away by gravitational waves across the
future boundary Iþ are widely used to extract astrophysical
effects—such as “black hole kicks” [7]—from numerical
simulations. Once the conceptual issues are thus resolved,
the geometric optics approximation can also be used to
extract the physical properties of radiation in the “wave
zone,” without direct reference to I [8].
This well-developed framework assumes Einstein’s

equation with Λ ¼ 0. However, over the last two decades,
observations have established that the Universe is under-
going an accelerated expansion that is well modeled by a
positive Λ. It is then natural to inquire if the Bondi-Sachs
theory can be extended to incorporate this feature. This task
has turned out to be surprisingly difficult. For example, the
Weyl tensor component Ψ0

4, routinely used to construct
waveforms in numerical simulations in the Λ ¼ 0 case,
acquires ambiguities even at Iþ if Λ > 0 [4,9,10]. Indeed,
we do not yet have the analog of the Bondi news to
characterize gravitational waves in a gauge invariant
manner, or expressions of the energy and momentum they
carry. Unforeseen difficulties arise already in the weak field
limit. Consequently, even Einstein’s 1918 quadrupole
formula [11] is yet to be generalized. Given the early
confusion on the reality of gravitational waves, it is
important to improve on this situation.

The goal of this Letter is to first succinctly summarize the
obstacles and then show that they can be overcome in the
weak field limit using strategies that are well suited for the
full theory. In particular, we will present the desired
generalization of Einstein’s quadrupole formula.
Full, nonlinear theory.—Because gravitational waves are

ripples on the very geometry of space-time, they lead to a
surprising feature already in the Λ ¼ 0 case. While every
asymptotically flat metric ĝab approaches a Minkowski
metric η̂ab near I [up to Oð1=rÞ terms], the presence of
gravitational waves introduces an essential ambiguity in the
choice of η̂ab. Consequently, contrary to one’s first expect-
ations, the asymptotic symmetry group is not the Poincaré
group P but the infinite dimensional Bondi-Metzner-Sachs
group B, and it reduces to P only when the Bondi news
vanishes [5,12]. The effect of gravitational waves is even
more striking for Λ > 0 [12]: as we now explain, the
physical metric ĝab differs from the de Sitter metric even to
leading order (albeit in a controlled manner).
The precise definition [4,12] of asymptotically de Sitter

space-times mimics that of asymptotically flat space-times,
except that Einstein’s equation now has a positive Λ term.
The asymptotic conditions are chosen to accommodate
familiar examples such as the Kerr–de Sitter space-time
and, in spite of their spatial homogeneity, the Friedmann-
Lemaître-Robertson-Walker models with “dark energy.”
However, unlike in the Λ ¼ 0 case, we no longer have a
unique conformal class of intrinsic metrics on I . As a
result, now the asymptotic symmetry group is the entire
DiffðIÞ [12,13], which does not admit a preferred four-
dimensional group of translations. Therefore, one cannot
even begin to introduce the notion of energy-momentum
carried by gravitational waves.
One’s first reaction would be to strengthen the boundary

conditions to suitably reduce DiffðIÞ. A natural strategy is
to require that the intrinsic, positive definite metric qab at I
be conformally flat as it is in de Sitter space-time. Familiar
examples satisfy this additional condition, and it
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immediately reduces DiffðIÞ to the ten-dimensional group
of conformal isometries of qab, which, furthermore, is
naturally isomorphic to the de Sitter group GdS. Therefore,
we can hope to define de Sitter momenta. Indeed, using the
field equation, a systematic procedure leads one to asso-
ciate a de Sitter chargeQξ½C� ¼

H
C Eabξ

adSb with any two-
sphere cross section C of I and any generator ξa of GdS,
where Eab is the electric part of the leading-order Weyl
tensor [12]. In Kerr–de Sitter space-time, the only non-
vanishing de Sitter charges are the (correctly normalized)
mass and angular momentum. Thus, at first glance, the
strategy of strengthening the boundary conditions appears
to be successful.
However, a detailed calculation shows that the field

equation and Bianchi identities imply that requiring con-
formal flatness of qab is equivalent to demanding that the
magnetic part Bab of the leading order Weyl curvature
should vanish at I . Since I is spacelike, it is clear from
Friedrich’s pioneering work [14] that this is a severe
mathematical restriction. The weak field analysis reported
below brings out the physical meaning of this restriction
explicitly. Furthermore, it turns out that, in the absence of
matter fields at I , the charges Qξ½C� are absolutely
conserved; if qab is required to be conformally flat,
gravitational waves do not carry any de Sitter momenta.
Thus, we are faced with a quandary: while requiring
conformal flatness of qab seems physically unreasonable,
dropping it leaves us with too weak a structure to discuss
the physics of gravitational waves.
Remark.—In terms of the physical metric ĝab, the

situation can be summarized as follows. First, the Bondi
ansatz has to be suitably generalized to accommodate a
positive Λ. One can then solve Einstein’s equation asymp-
totically [15] to obtain the metric qab on Iþ, following
Ref. [12]. In the axisymmetric case, one obtains

qabdxadxb ¼ du2 þ e2Λfdθ2 þ e−2Λfsin2θdφ2 ð1Þ

with f ¼ fðu; θÞ. The single radiative mode (or polariza-
tion) of axisymmetric gravitational waves is encoded in the
“shear term” via f. The three-metric qab is conformally flat
if and only if f ¼ 0, i.e., the radiative mode is absent. Thus,
if we allow gravitational radiation near Iþ, then the
physical metric differs from the de Sitter metric already
at leading order in the Bondi-type expansion.
Linearization off de Sitter space-time.—As in the Λ ¼ 0

case, the analysis of linearized gravitational waves provides
intuition and guidance for the development of the full
nonlinear theory. Since the background de Sitter metric
naturally reduces DiffðIÞ to GdS, the quandary in the
nonlinear case is simply bypassed in this approximation.
But as we now discuss, other complications remain.
As in the cosmology literature, we will restrict ourselves

to the upper Poincaré patch of de Sitter space-time
(although the linearized solutions we obtain can be

extended to full de Sitter space-time using Cauchy evolu-
tion). It is convenient to express the perturbed physical
metric ĝab using conformal time η as

ĝab ¼ a2ðηÞðg̥ ab þ ϵhabÞ with g
̥
abdxadxb ¼ −dη2 þ d~x2;

where aðηÞ ¼ −1=Hη≡ −
ffiffiffi
3

p
=ð ffiffiffiffi

Λ
p

ηÞ is the de Sitter scale
factor, and ϵ is the (mathematical) smallness parameter.
Then, in the transverse-traceless gauge, the general solution
to the linearized Einstein equation is given by

habð~x; ηÞ≡
Z

d3k
ð2πÞ3

X2

ðsÞ¼1

hðsÞ~k
ðηÞeðsÞab ð~kÞei~k·~x; ð2Þ

where ðsÞ labels the two helicity states, eðsÞab ð~kÞ are the
standard polarization tensors, and

hðsÞ~k
ðηÞ ¼ ð−2HÞfEðsÞ

~k
½η cosðkηÞ − ð1=kÞ sinðkηÞ�

− BðsÞ
~k
½η sinðkηÞ þ ð1=kÞ cosðkηÞ�g: ð3Þ

Here, EðsÞ
~k

and BðsÞ
~k

are arbitrary coefficients, determined
by the initial data of the solution. In a standard completion
of de Sitter space-time, Iþ is the η ¼ 0 surface and g

̥
ab

serves as the conformally rescaled metric, which is well
behaved at Iþ. By inspection, the mode with coefficient
EðsÞ
~k

vanishes at Iþ and is called the “decaying mode” in the
cosmology literature while the mode with the coefficient
BðsÞ
~k

is nonzero at Iþ and is called the “growing mode.”
Let us now go beyond the cosmology literature by

calculating the de Sitter momenta carried by gravitational
waves. The covariant phase space framework provides a
natural avenue that avoids the use of pseudotensors, which
caused much confusion in the early days on whether
gravitational waves carry energy [2]. Of particular interest
is the expression ET of energy associated with a de Sitter
time translation T ¼ −Hðη∂η þ ~x · ∂~xÞ. It is given by
Ref. [16]:

ET ¼ H
8πG

Z
d3k
ð2πÞ3 k

X2

ðsÞ¼1

EðsÞ
~k
L~kðB

ðsÞ
~k
Þ⋆ þ 2EðsÞ

~k
ðBðsÞ

~k
Þ⋆:

ð4Þ

Note that Iþ is spacelike and since all Killing vectors,
including de Sitter time translations Ta, must be tangential
to Iþ, they are spacelike in some neighborhood of Iþ.
Therefore, one would expect the Hamiltonian generating
the canonical transformation induced by Ta not to have a
definite sign. This expectation is explicitly borne out in
Eq. (4): the de Sitter energy ET can be negative and with
arbitrarily large magnitude, no matter how small Λ is. The
limit Λ → 0 requires care; one has to use the differential
structure defined by ðt; ~xÞ rather than ðη; ~xÞ, where t is the
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proper time, given by e−Ht ¼ −Hη. When this is done, the
de Sitter time translation Ta goes over to a Minkowski time
translation and ET to energy in Minkowski space-time,
which is of course positive. Thus, there is a surprise:
gravitational (and also electromagnetic) waves can carry
negative energy ET in de Sitter space, and the lower bound
on ET is infinitely discontinuous in the limit Λ → 0.
Finally, one can show that the magnetic part Bab of the

leading order, linearized Weyl curvature vanishes at Iþ if
and only if the coefficients BðsÞ

~k
are all identically zero.

Thus, if we demand that the perturbation habð~x; ηÞ should
respect the conformal flatness of the de Sitter metric to first
order, we eliminate all the growing modes, cutting by fiat
the space of allowed linearized perturbations by half.
Furthermore, while the decaying modes do remain,
Eq. (4) implies that the conserved energy ET carried by
them vanishes identically. (The same is true for linear and
angular momentum.) This discussion brings out that the
conformal flatness condition on qab is a physically inad-
missible restriction in the discussion of gravitational waves.
The quadrupole formula.—Consider a time varying

quadrupole in de Sitter space-time, depicted in Fig. 1.
Our task is to calculate the flux of energy carried by
gravitational waves across Iþ in the post–de Sitter, first
post-Newtonian approximation. Surprisingly, one faces
several new difficulties. We will give four illustrative
examples. First, since gravitational waves can carry arbi-
trarily large negative energy in de Sitter space-time, a priori,
there is a danger of a gravitational instability. Second, in the
standard Λ ¼ 0 derivation, one considers r ¼ const time-
like cylinders with large r, which approach Iþ, and makes
heavy use of 1=r expansions to calculate the energy flux
through these cylinders. In particular, the “transverse-
traceless decomposition” used in this calculation is gauge
invariant only up to Oð1=r2Þ terms (see, e.g., Ref. [17]). In
de Sitter space-time, on the other hand, such timelike
cylinders approach the past cosmological horizon Eþði−Þ
rather than Iþ and the energy flux across Eþði−Þ vanishes
for retarded solutions. Therefore, a new approximation
scheme tailored to the de Sitter Iþ is needed. Third, in
contrast to the Λ ¼ 0 case, the propagation of the metric
perturbation hab is not sharp: there is also a tail term that is
as significant near Iþ as the sharp term, creating the
possibility that Einstein’s quadrupole formula may be
significantly modified. Finally, the physical wavelengths
λ of the perturbations grow as the waves propagate and can
vastly exceed the curvature radius in the asymptotic region,
making the standard λ ≪ r expansion (and the geometric
optics approximation) untenable near Iþ. Because of these
new features, it is not clear that one’s initial expectation that
a tiny cosmological constant will only modify Einstein’s
quadrupole formula negligibly is correct. Indeed, as we
saw, physical quantities can be discontinuous at Λ ¼ 0.
However, our detailed investigation shows that several
factors intervene to alleviate these apparently menacing

implications of a positive Λ for sources of interest to the
current gravitational wave observatories [18].
The first new element is to replace the 1=r expansion

used in the Λ > 0 case with a well-controlled “late time”
expansion, i.e., to approach Iþ using η ¼ const, spacelike
surfaces. Consider retarded (trace-reversed) solutions hab to
the linearized Einstein equation on de Sitter space-time
sourced by a first order stress-energy tensor Tab depicted in
Fig. 1, given in Ref. [19]. We assume that the physical size
DðηÞ of the source is uniformly bounded by some
Do ≪ lΛ, where lΛ ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

is the cosmological radius.
We can restrict ourselves to the upper Poincaré patch of de
Sitter space-time because observers in the lower Poincaré
patch cannot see the source or detect the emitted radiation.
One can extract the leading order piece of this post-de Sitter
solution using the late time and first post-Newtonian
approximations, i.e., ignoring O(ðDo=lΛÞð1 − η=rÞ) and
Oðv=cÞ terms relative to those that are Oð1Þ. The solution,
of course, involves integrals over the stress-energy tensor.
In a second step, using the continuity equation, one can

replace these integrals with source quadrupoles following
the procedure used in the Λ ¼ 0 case. The mass (or, more
precisely, the density) quadrupole moment is defined in an
invariant manner as an integral on each η ¼ const slice:

QðρÞ
ab ðηÞ ¼

Z
d3VρðηÞðaxaÞðaxbÞ: ð5Þ

However, one finds that just as pressure contributes to
gravitational attraction in the Raychaudhuri equation in
cosmology, now a time changing pressure quadrupoleQðpÞ

ab
[obtained by replacing ρðηÞ with pðηÞ in Eq. (5)] also
contributes. The expression of habð~x; ηÞ has a sharp
propagation term that is sensitive only to the time

FIG. 1. The rate of change of quadrupole moments at the point
ð−j~xj; 0Þ on the source creates the retarded field at the point
ð0; j~xjÞ on Iþ. The figure also shows the cosmological foliation
η ¼ const and the timelike surfaces r ¼ const. As r goes to
infinity, the r≔j~xj ¼ const surfaces approach Eþði−Þ. Therefore,
in contrast with the situation in Minkowski space-time, for
sufficiently large values of r, there is no flux of energy across
the r ¼ const surfaces.

PRL 116, 051101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

5 FEBRUARY 2016

051101-3



derivatives of the quadrupoles at the retarded instant ηret, as
well as a tail term involving an integral over η ∈ ð−∞; ηretÞ,
which is absent in the Λ ¼ 0 case.
In the final step, we can use the covariant phase space

framework [16] to extract the energy ET carried by the
linearized gravitational wave hab, where Ta is the de Sitter
Killing vector tailored to the source via i�. We find

ET¼̂
G
8π

Z

Iþ
du d2S ½Rabð~xÞRTT

ab ð~xÞ�: ð6Þ

Here, u is the affine parameter of Ta; the “radiation field”
Rabð~xÞ on Iþ is given by

Rabð~xÞ¼̂ ½Q…ðρÞ
ab þ 3HQ̈ðρÞ

ab þ 2H2 _QðρÞ
ab

þHQ̈ðpÞ
ab þ 3H2 _QðpÞ

ab þ 2H3QðpÞ
ab �ðηretÞ ð7Þ

and RTT
ab ð~xÞ is its divergence-free and trace-free part on

Iþ. The “dot” stands for the Lie derivative with respect to
the Killing field Ta. (For details, see Ref. [18].)
The radiated energy has the following properties. (i) One

can show that ET is positive definite although Ta, being
tangential to Iþ, is spacelike. (ii) ET vanishes identically if
the source is stationary, i.e., LTTab ¼ 0 despite the fact that
there is a term QðpÞ

ab without a dot. (iii) Since H → 0 in the
limit Λ → 0, we recover Einstein’s quadrupole formula in
this limit. (iv) If the dynamical time scale associated with
the source is negligible compared to the Hubble time,

then Rab ≈Q
::: ðρÞ
ab , whence Einstein’s quadrupole formula

provides an excellent approximation to the energy loss for
compact binaries of interest to LIGO observatories.
The ‘tameness’ of these properties raises the following

question: Why did the menace of a positive Λ turn out to be
a phantom for sources of current interest? First, all
gravitational waves with negative de Sitter energy have
nontrivial fluxes across the past cosmological horizon
Eþði−Þ. Since these fluxes vanish for retarded solutions,
negative energy solutions cannot arise from time changing
quadrupoles. Second, we replaced the 1=r expansions and
the approximate notion of “transverse-traceless fields” used
in the Λ ¼ 0 analysis [17] with a late-time expansion and
the exactly gauge invariant notion of transverse-traceless
fields (normally used in cosmology). Third, while the
propagation of the metric perturbation hab is not sharp,
that of its time derivative turns out to be sharp and it is only
the time derivative that features in the expression of
radiated energy. Finally, although the wavelengths of the
perturbations do grow as they propagate, because the time
derivatives in Eq. (6) are evaluated at the retarded time ηret,
what matters is the wavelength at the emission time, rather
than at late times near Iþ.
Summary and outlook.—Given the early confusion on

whether gravitational waves are physical and the fact that
the gravitational wave observatories are now on the

threshold of opening a new window on the Universe, it
is important that the theoretical foundations of the subject
be solid. A priori, one cannot be certain that the effects of Λ
would be necessarily negligible because, irrespective of
how small its value is, its mere presence introduces several
conceptual complications requiring a significant revision of
the standard framework. Our analysis makes the errors
involved in setting Λ ¼ 0 explicit. In particular, in the post–
de Sitter, first post-Newtonian approximation, it shows that
these complications are harmless for binary systems that
are the primary targets of the current observatories. But
some of the subtleties associated with a nonzero Λ could be
important for future detectors such as the Einstein
Telescope that will receive signals from well beyond the
cosmological radius. They may also be important for the
analysis of the very long wavelength radiation produced by
the first black holes. To probe such issues, the current
analysis is being extended to Friedmann-Lemaître-
Robertson-Walker space-times with positive Λ.
Our results also provide guidance for constructing the

Λ > 0 extension of the Bondi-Sachs framework for the full,
nonlinear theory. First, even in the absence of a clear-cut
candidate replacing the Bondi news tensor, one could
impose the “no incoming radiation” condition by asking
that there be no flux of fields propagating into space-time
across the past cosmological horizon Eþði−Þ, a condition
that can be neatly captured by requiring that Eþði−Þ be a
weakly isolated horizon [20]. Second, in the linear theory
we used the background de Sitter metric to reduce DiffðIþÞ
to GdS. In the nonlinear case, given the intrinsic metric qab
at Iþ, one can attempt to extract from it a conformally flat
metric q

̥
ab in an invariant manner, e.g., by setting f ¼ 0

in Eq. (1). The asymptotic symmetries ξa would then be
conformal Killing fields of this “background metric” q

̥
ab

and the de Sitter fluxes [12] would not vanish because ξa

are not conformal Killing fields of qab. Finally, in the
Λ ¼ 0 case, fluxes of the Bondi-Metzner-Sachs momenta
across Iþ [6] are closely related to their linear analogs. Our
linear flux expressions already provide strong hints on the
flux expressions in the full theory.
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