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Analyzing the noise in the momentum profiles of single realizations of one-dimensional Bose gases, we
present the experimental measurement of the full momentum-space density correlations hδnpδnp0 i, which
are related to the two-body momentum correlation function. Our data span the weakly interacting region
of the phase diagram, going from the ideal Bose gas regime to the quasicondensate regime. We show
experimentally that the bunching phenomenon, which manifests itself as super-Poissonian local fluctua-
tions in momentum space, is present in all regimes. The quasicondensate regime is, however, characterized
by the presence of negative correlations between different momenta, in contrast to the Bogolyubov theory
for Bose condensates, predicting positive correlations between opposite momenta. Our data are in good
agreement with ab initio calculations.
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Introduction.—Ultracold-atom experiments have proven
their efficiency as quantum simulators of models in
quantum many-body physics [1]. One dimensional (1D)
gases, in particular, are accurately simulated, as shown by
the excellent agreement between experimental results and
ab initio theoretical predictions [2–9]. Among the least
understood properties of quantum many-body systems is
the out-of-equilibrium dynamics, addressed recently by
several cold-atom experiments [8,10–12].
Correlation functions are essential tools used to describe

the physics of a system, as they fundamentally characterize
the different phases the system can exhibit [13]. This is
particularly true for 1D gases, where the role of fluctuations
is enhanced. For instance, the local two-body correlation
function in real space distinguishes the ideal Bose gas
(IBG) regime (characterized by bunching) from the quasi
Bose-Einstein condensate (QBEC) regime (with the
absence of bunching) from the fermionized regime (char-
acterized by strong antibunching) [7,14]. The two-body
correlation function in an expanding Bose gas has been
measured in [15] and can be used for thermometry in the
QBEC regime [16], while higher order correlation func-
tions allow the identification of nonthermal states [17].
Correlation functions are also essential to describe out-of-
equilibrium dynamics. For example, the light-cone effect
has been reported on the time evolution of the correlation
functions after a sudden perturbation of the system [10,11],
and the dynamical Casimir effect was identified by study-
ing a two-body correlation function in [18]. Investigating
the behavior of correlation functions is thus an important
issue in quantum simulation. However, correlation func-
tions, especially those of higher orders, are in general

unknown theoretically, not even at thermal equilibrium,
so that further knowledge in this domain is highly
desirable.
In this Letter, we investigate for the first time the full

structure of the second-order correlation function in
momentum space of a 1D Bose gas at thermal equilibrium.
The measurements rely on the statistical noise analysis of
sets of momentum profiles taken under similar experimen-
tal conditions. Our data span the weakly interacting region
of the phase diagram of 1D Bose gases [19], going from the
QBEC regime to the IBG regime. The bunching phenome-
non, which manifests itself by strong, super-Poissonian
local fluctuations in momentum space, is seen in all regimes.
TheQBEC regime is, however, characterized by the presence
of negative correlations associating different momenta, as
predicted in [20]. This contrastswith the positive correlations
between opposite momenta expected for systems with true
or quasi-long-range order [21]. In both asymptotic regimes,
our data compare well with appropriate models, while the
data in the crossover are in good agreement with quantum
Monte Carlo (QMC) simulations. These comparisons
involve no fitting parameters. Finally, we propose a quanti-
tative criterion to characterize the crossover.
Experiment.—Using an atom-chip experiment, we real-

ize single quasi-1D ultracold 87Rb clouds, as described in
[22]. Using evaporative cooling, we prepare atoms in the
jF ¼ 2; mF ¼ 2i ground state, at thermal equilibrium in a
harmonic trap whose transverse and longitudinal oscillation
frequencies are ω⊥=ð2πÞ≃ 1.9 kHz and ωz=ð2πÞ≃ 7 Hz,
respectively. The estimated population in the transverse
excited states is at most 40%, such that the data are indeed
close to the 1D regime of Bose gases. We perform
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thermometry by fitting the measured mean in situ linear
density profile ρðzÞ and density fluctuations to the thermo-
dynamic predictions of the modified Yang-Yang model
[2,4], where the interatomic interaction is taken into
account only in the transverse ground state, modeled
by a contact term of coupling constant g ¼ 2ℏω⊥a,
a ¼ 5.3 nm being the 3D scattering length.
A single shot of the momentum distribution nðpÞ is

obtained by imaging the atomic cloud in the Fourier plane
of a magnetic lens using the focusing technique [22–24],
as detailed in the Supplemental Material [25]. The spatial
distribution of the atom cloud then reflects the initial
momentum distribution [22]. These images are discretized
with a pixel size in momentum space Δ. Moreover, the
resolution of the optical system and the atomic motion
during the imaging pulse are responsible for blurring,
modeled by a Gaussian impulse response function of
root-mean-square width δ. The effective atom number
measured in pixel α is thus Nα ¼

R
dpnðpÞAðα; pÞ, where

Aðα;pÞ¼ R
Δα
dqe−ðp−qÞ2=ð2δ2Þ=ðδ ffiffiffiffiffiffi

2π
p Þ. The second-order

correlation function is deduced from a set of momentum
profiles taken under similar experimental conditions.
The standard deviation of shot-to-shot atom-number
fluctuations ranges from 4% at high densities to 40% at
low densities. To mitigate their effect, we order profiles
according to their atom number and, for each profile,
we use a running average to compute the corresponding
mean profile hNαi. Moreover, we normalize each
profile to the atom number of the running average,
before computing the fluctuations δNα ¼ Nα − hNαi.
We finally extract the momentum-correlation map
hδNαδNβi. Figure 1 (top row) shows the results for three
different clouds lying, respectively, (A) in the IBG regime,
(B) in the QBEC-IBG crossover, and (C) deep in the
QBEC regime. For the data presented in this Letter,
the focusing time is τ ¼ 25 ms, leading to a pixel size
in momentum space Δ=ℏ ¼ 0.15 μm−1. The resolution is
δ=Δ≃ 1.1 [28].
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FIG. 1. Momentum correlations hδNαδNβi for a gas in the IBG regime (data A, left column), in the QBEC regime (data C, right
column), and in the QBEC-IBG crossover (data B, middle column). The pixel size is Δ=ℏ ¼ 0.15 μm−1. The experimental data are
shown in the top row. Data A, B, and C are compared with the IBG theory, QMC calculations, and QBEC theory, respectively, at the
temperature of the data determined by independent thermometry methods [25]. The middle row gives the computed momentum
correlations. The bottom row shows the diagonal cuts: the experimental data in circles for α ¼ β (squares for α ¼ −β for data B and C
only) are compared with their respective theory model in dashed (dotted) lines. The error bars are statistical. The dash-dotted lines give
the shot-noise limit.
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Ideal Bose gas regime.—Thermometry based on in situ
density profiles indicates that data A lie within the IBG
regime (N ¼ 1900, T ¼ 109 nK) [25]. Figure 1 (A1)
shows the corresponding momentum correlations. We
observe large correlations on the diagonal α≃ β, while
hδNαδNβi takes substantially smaller and rather erratic
values in the rest of the plane [29]. This is consistent with
what is expected for a homogeneous IBG in the grand
canonical ensemble: since the single-particle eigenstates
have well defined momenta, the correlations between
different momenta are vanishing. Moreover, fluctuations
of the occupation number Np in the state of momentum p
are hδN2

pi ¼ hNpi þ hNpi2, where the second term is the
famous bunching term. Previous results generalize to the
case of our trapped clouds through a local density approxi-
mation (LDA), as outlined in the Supplemental Material
[25], valid since the correlation length of hψ†ðzÞψðz0Þi is
much smaller than the cloud length L [30]. The momen-
tum-space density correlations are then the sum of the shot-
noise and bunching contributions,

hδnpδnp0 i ¼ δðp − p0Þhnpi þ Bðp; p0Þ;

Bðp; p0Þ ¼
����
Z

dzhνðhÞρðzÞ;T ½ðpþ p0Þ=2�ieiðp−p0Þz=ℏ
����
2

; ð1Þ

where the bunching term Bðp; p0Þ uses the momentum

distribution νðhÞρ;TðpÞ of a homogeneous gas of temperature T

and linear density ρ, normalized to ρ ¼ R
dpνðhÞρ;TðpÞ.

Bðp; p0Þ takes nonzero values only for jp0 − pj of the
order of ℏ=L. Since here ℏ=L ≪ δ, one can make the
approximation Bðp; p0Þ ¼ BðpÞδðp − p0Þ, where

BðpÞ ¼ 2πℏ
Z

dzhνðhÞρðzÞ;TðpÞi2: ð2Þ

Note that for a degenerate cloud, for p within the width of
nðpÞ, the bunching term is much larger than the shot-noise

term since hνðhÞρðzÞ;TðpÞi ≫ 1. Finally, blurring and discreti-

zation lead to the momentum-correlation map

hδNαδNβi ¼
Z Z

dpdp0Aðα; pÞAðβ; p0Þhδnpδnp0 i: ð3Þ

The theoretical prediction quantitatively describes our
measurements, as shown in Fig. 1 (A1–A2). Here, we
evaluate Eq. (2) approximating hνðhÞρðzÞ;TðpÞi by its value
for highly degenerate IBG gases: a Lorentzian of
full width at half maximum (FWHM) of 2ℏ=lϕ, where
lϕ ¼ ℏ2ρ=ðmkBTÞ. Since correlations between different
pixels are introduced by the finite resolution alone [31],
the only relevant information is the diagonal term hδN2

αi,
whose scaling behavior is discussed in the Supplemental
Material [25]. In Fig. 1 (A3), we overlay themeasured hδN2

αi

to theoretical predictions, and find a good agreement up
to statistical error of the measurement. The fluctuations are
well above the shot-noise level, which is obtained by setting
BðpÞ ¼ 0, showing that this IBG is highly degenerate.
Note that the above grand-canonical analysis is legiti-

mate since ℏ=lϕ ≫ Δ ≫ ℏ=L: a pixel may be described by
a subsystem at equilibrium with the reservoir of energy and
particles formed by the rest of the cloud.
Quasicondensate regime.—The analysis of the in situ

density fluctuations [25] shows that data C lie in the QBEC
regime (N ¼ 14000, T ≃ 75 nK). The mean density profile
indicates a slightly higher temperature (T ¼ 103 nK), the
difference possibly coming from a deviation from the
Gibbs ensemble [12,17]. We show the measured momen-
tum correlations in Fig. 1 (C1) and its diagonal cuts along
α ¼ β and α ¼ −β in (C3). We first observe that a strong
bunching in momentum space is also present here: the
measured hδN2

αi is well above the shot-noise level alone.
This is in stark contrast with the behavior in real space,
where the QBEC regime is characterized by the suppres-
sion of the bosonic bunching [32]. Moreover, the correla-
tion map hδNαδNβi shows strong anticorrelations around
the region α ¼ −β (i.e., p0 ¼ −p). These features are
characteristic of the QBEC regime in a grand canonical
ensemble, and have been computed for a homogeneous gas
in [20]. Since the correlation length of the gas is much
smaller than L [33], LDA applies and, as shown in the
Supplemental Material [25], we have

hδnpδnp0 i≃ δðp − p0Þhnpi þ Bðp; p0Þ þ hδnpδnp0 ireg;
ð4Þ

hδnpδnp0 ireg ¼
Z

dz
lϕðzÞ3ρðzÞ2
ð2πℏÞ2 F

�
2lϕðzÞp

ℏ
;
2lϕðzÞp0

ℏ

�
;

ð5Þ

where F is the dimensionless function given by Eq. (29) of

[20], and Bðp; p0Þ is evaluated substituting νðhÞρ;TðpÞ by a
Lorentzian function of FWHMℏ=lϕ. The effect of the finite
resolution and pixelization is taken into account using
Eq. (3). These predictions, plotted in Fig. 1 (C2—C3), are
in quantitative agreement with the experimental data. Note
that the center-of-mass (COM) motion is decoupled from
the internal degrees of freedom in a harmonic trap, and
the COM fluctuations are about twice as large as those
expected at thermal equilibrium for this data set [34]. To
mitigate their effect, we postselect the data by bounding the
COM fluctuations. Moreover, since the experimental res-
olution is not sufficient to resolve momentum scales of the
order of ℏ=lϕ, the effect of hδnpδnp0 ireg on the diagonal
reduces the signal that would be expected from bunching
alone by almost a factor of 10.
Our results provide the first experimental proof of the

persistence of bunching in momentum space in a QBEC, as
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well as the presence of negative correlations, in particular
between opposite momenta. The latter contrasts with the
behavior expected for a weakly interacting Bose-Einstein
condensate, where Bogoliubov theory predicts the presence
of positive correlations between opposite momenta [25].
The absence of opposite-p positive correlations is a clear
consequence of the absence of true long range order.
The atom-number fluctuations are strongly reduced in a

QBEC because of repulsive interactions, and the negative
part of F , which concentrates on the momentum region
p≲ ℏ=lc, enforces the reduced atom-number fluctuations
by compensating for the diagonal bunching term [20]. In
our experiment, however, one may a priori suspect that
the measured anticorrelations could come from the nor-
malization procedure used in the data analysis. We rule
out such a possibility by performing several checks,
detailed in the Supplemental Material [25]. The agreement
with theory in our case is ensured by the fact that the
fluctuations hδnpδnp0 ireg are dominated by the contribu-
tion from the central part of the cloud, where lϕ is the
largest [see Eq. (5)]. It is well described by the grand
canonical ensemble as the rest of the cloud acts as a
reservoir, and the corresponding anticorrelations are much
stronger than those introduced by the normalization of the
total atom number. The negative part of the correlation
map thus reflects a local decrease of the atom-number
fluctuations.
In the QBEC-IBG crossover.—While the theoretical

analyses above describe reasonably well the two asymp-
totic regimes of IBG and QBEC, they do not permit
us to investigate the crossover in between. To explore
the crossover, we use canonical QMC calculations [35].
Discretizing space allows us to recast the Lieb-Liniger
model in the form of a Bose-Hubbard model [22], which
can be simulated via the stochastic series expansion
with directed-loop updates [36]. In particular, a double
directed-loop update allows one to compute the momen-
tum correlations hδnpδnp0 i. Blurring and pixelization is
then applied according to Eq. (3). The features of
hδnpδnp0 i are mainly washed out at the level of the
experimental resolution [37], demanding a very high
numerical precision on hδnpδnp0 i to properly evaluate
the discretized correlation map. The results for the
parameters of data B (N ¼ 7000, T ¼ 144 nK), shown
in Fig. 1 (B2) and (B3), reproduce quantitatively the
features seen in the experimental data, shown in Fig. 1
(B1) and (B3). Namely, the bunching phenomenon
remains prominent on the α ¼ β diagonal, while the
anticorrelations along the α ¼ −β is less pronounced than
what is found for data C.
Quantifying the crossover.—As shown in the

Supplemental Material [25], Eqs. (4) and (5) generalize
the computation of the momentum correlations to the whole
parameter space, provided F is now a function of the
reduced temperature t ¼ 2ℏ2kBT=ðmg2Þ and the interaction

parameter γðzÞ ¼ mg=½ℏ2ρðzÞ�. F interpolates between 0 in
the IBG regime (t ≫ 1 and tγ3=2 ≫ 1) and Eq. (29) of [20]
in the QBEC regime (tγ3=2 ≪ 1 and γ ≪ 1). For the
experimental resolution of this Letter, however, one cannot
isolate the contribution of F from that of the bunching
term. We thus consider the experimental quantity

C ¼
X
α

hδNαδN−αi=hN0i: ð6Þ

As derived in the Supplemental Material [25], in the
limit δ,Δ ≪ ℏ=lϕ and δ ≫ Δ, C depends only on t and
γ0 ≡ γ (z ¼ 0). For a highly degenerate IBG, we find
C≃ 1.08=ðtγ20Þ, whereas C≃ −2.28=ðtγ20Þ for a QBEC.
These asymptotic behaviors are shown as dashed and
dotted lines in Fig. 2. The solid line gives the prediction
for an IBG (where Ctγ20 now depends on t and γ0) at t ¼
1000 [38]. Figure 2 also displays the experimental values of
Ctγ20 for data A–C. However, since ℏ=lϕ ≫ δ ≫ Δ is not
satisfied for our data sets, the above theoretical predictions
are not expected to quantitatively agree with the exper-
imental data. Moreover, comparing different data sets is
delicate since they correspond to different values of δ=lϕ.
Outlook.—A future extension of our study of two-body

correlations in momentum space concerns the fermionized
regime of 1D Bose gases, where quantum fluctuations,
difficult to observe in momentum space for weakly
interacting gases, might have measurable effects. The study
of correlations in momentum space at thermal equilibrium
could serve as a reference for the investigation of non-
thermal states and that of out-of-equilibrium dynamics
arising, for example, from a quench of the coupling
constant g. Correlations in momentum space have also
been proposed as a probe of Hawking-like radiation
generated by a sonic black hole [39], and the results of
this Letter are certainly relevant for this quest.
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